更改

删除108字节 、 2024年9月2日 (星期一)
→‎问题背景 移动图片位置
第5行: 第5行:     
=== 自然和社会现象 ===
 
=== 自然和社会现象 ===
 +
 +
[[文件:蚊群-杨明哲-202409011.png|无框]][[文件:集智公众号图片 20240901071124.gif|无框|344x344像素]]
    
[[复杂系统]]的涌现问题由来已久<ref name=":0">James P. Crutchfield, Karl Young. Inferring Statistical Complexity. PHYSICAL REVIEW LETTERS, VOLUME 63, NUMBER 2. 10 JULY 1989</ref><ref name=":1">James P. Crutchfield. The Calculi of Emergence: Computation, Dynamics, and Induction. SFI 94-03-016. 1994</ref><ref name=":2">James E. Hanson, James P. Crutchfield. Computational Mechanics of Cellular Automata: An Example. SFI WORKING PAPER: 1995-10-095</ref><ref name=":3">Cosma Rohilla Shalizi, James P. Crutchfield. Computational Mechanics: Pattern and Prediction, Structure and Simplicity. February 1, 2008</ref>。最吸引人的和使人迷惑的自然模式是那些在高度结构化的联合行为随着时间涌现于简单子系统的交互。鸟群以步调一致地形式飞行,鱼儿在没有领头带领以连贯的序列群组流转并突然共同转向的方式游动。蚊群形成复杂的社会,生存继承自特异化的社会分工,不是由中心领导所带领。几个世纪前,木星大气中五彩斑斓的混沌运动形成了被称之为“大红斑”的巨大漩涡,至少已存在200到350年,期间会逐步改变颜色和形状。出现在经济系统中商品价格优化从主体服从本地商业规则中浮现。甚至在明显复杂系统处理玩家关键角色涌现全局信息。比如说,人类对场景中一小块颜色的感知,会依赖于整个场景的颜色成份,不仅仅在于对空间局部视网膜检测器对频谱的反应。类似地,外形的感知可以由全局拓扑属性被增强,比如曲线是开放还是封闭。
 
[[复杂系统]]的涌现问题由来已久<ref name=":0">James P. Crutchfield, Karl Young. Inferring Statistical Complexity. PHYSICAL REVIEW LETTERS, VOLUME 63, NUMBER 2. 10 JULY 1989</ref><ref name=":1">James P. Crutchfield. The Calculi of Emergence: Computation, Dynamics, and Induction. SFI 94-03-016. 1994</ref><ref name=":2">James E. Hanson, James P. Crutchfield. Computational Mechanics of Cellular Automata: An Example. SFI WORKING PAPER: 1995-10-095</ref><ref name=":3">Cosma Rohilla Shalizi, James P. Crutchfield. Computational Mechanics: Pattern and Prediction, Structure and Simplicity. February 1, 2008</ref>。最吸引人的和使人迷惑的自然模式是那些在高度结构化的联合行为随着时间涌现于简单子系统的交互。鸟群以步调一致地形式飞行,鱼儿在没有领头带领以连贯的序列群组流转并突然共同转向的方式游动。蚊群形成复杂的社会,生存继承自特异化的社会分工,不是由中心领导所带领。几个世纪前,木星大气中五彩斑斓的混沌运动形成了被称之为“大红斑”的巨大漩涡,至少已存在200到350年,期间会逐步改变颜色和形状。出现在经济系统中商品价格优化从主体服从本地商业规则中浮现。甚至在明显复杂系统处理玩家关键角色涌现全局信息。比如说,人类对场景中一小块颜色的感知,会依赖于整个场景的颜色成份,不仅仅在于对空间局部视网膜检测器对频谱的反应。类似地,外形的感知可以由全局拓扑属性被增强,比如曲线是开放还是封闭。
第28行: 第30行:  
一般对涌现现象定义为不能简单归结为元素间的相互作用力,而需要从对应层面来描述的现象,认为是涌现。如果建立了促成这种涌现现象发生的机理的算法模型,则细化为[[因果涌现]],是随附了[[宏观动力学]]的一类涌现。这种涌现往往比微观层面更强,在Erik Hoel的理论框架中,用[[有效信息]]EI来度量因果涌现效应的强弱。在'''计算力学'''框架中,则在某些层面将“新颖”就归结为“涌现”,而这些新颖的东西就是需要在旧有的理论框架上做补充,或者要么建立新的框架。新颖的东西能在[[因果涌现]]框架上不断地出现,最终能被宏观动力学方程<math>\Phi(x)</math>和计算力学原理所捕捉。
 
一般对涌现现象定义为不能简单归结为元素间的相互作用力,而需要从对应层面来描述的现象,认为是涌现。如果建立了促成这种涌现现象发生的机理的算法模型,则细化为[[因果涌现]],是随附了[[宏观动力学]]的一类涌现。这种涌现往往比微观层面更强,在Erik Hoel的理论框架中,用[[有效信息]]EI来度量因果涌现效应的强弱。在'''计算力学'''框架中,则在某些层面将“新颖”就归结为“涌现”,而这些新颖的东西就是需要在旧有的理论框架上做补充,或者要么建立新的框架。新颖的东西能在[[因果涌现]]框架上不断地出现,最终能被宏观动力学方程<math>\Phi(x)</math>和计算力学原理所捕捉。
   −
自然界中(Nature)或宇宙(Prototype Universe)中总是处在不断变化之中,这也是相对的。在这种相对变化的环境中,可能出现确定性或稳定性,导致观测者可以被存在。这时观测者和特定的稳定环境出现相互依赖,观测者对特定环境之外投入的关注视情况而定。观测者对该稳定环境中出现的[[微扰]]会加以关心,直到微扰变得可测量且足够充分,超过某一阈值,使得群落对该现象都表达过关心。达到相变程度后,涌现现象即产生,但群落中的观测者对相变后的环境仍会继续观测,改变内生涌现斑图,或启动单个或群落的效应器,使得环境的多个指标重新落入某个范围。这种差额机制(co-relation)即可用于对比,也可用于对齐。在生态群落多级系统中,则要定义“正”的概念和范围,以判断“偏”的存在性。
+
自然界中(Nature)或宇宙(Prototype Universe)中总是处在不断变化之中,这也是相对的。在这种相对变化的环境中,可能出现确定性或稳定性,导致观测者可以被存在。这时观测者和特定的稳定环境出现相互依赖,观测者对特定环境之外投入的关注视情况而定。观测者对该稳定环境中出现的[[微扰]]会加以关心,直到微扰变得可测量且足够充分,超过某一阈值,使得群落对该现象都表达过关心。达到相变程度后,涌现现象即产生,但群落中的观测者对相变后的环境仍会继续观测,改变内生涌现斑图,或启动单个或群落的效应器,使得环境的多个指标重新落入某个范围。这种差额机制(co-relation)即可用于对比,也可用于对齐。
 
  −
[[文件:蚊群-杨明哲-202409011.png|无框]][[文件:集智公众号图片 20240901071124.gif|无框|344x344像素]]
      
自然存在是一个世界,主体(观察者)是世界的子集的同时,主体也会在内部构建一个世界的映象。这个过程本身从定性上来讲,也是一种涌现现象。'''计算力学'''选择建立从自然到主体,再从主体到涌现(头脑风暴),最后主体增加适应性的角度来阐述关系。
 
自然存在是一个世界,主体(观察者)是世界的子集的同时,主体也会在内部构建一个世界的映象。这个过程本身从定性上来讲,也是一种涌现现象。'''计算力学'''选择建立从自然到主体,再从主体到涌现(头脑风暴),最后主体增加适应性的角度来阐述关系。
470

个编辑