更改

无编辑摘要
第161行: 第161行:       −
不管状态空间按照哪一个Hard Partitioning方案做分类,它都有对应后续的对转移矩阵和概率空间的粗粒化方案(公式1和2)<ref name=":1" />,并满足上面提到的粗粒化的两个规则。
+
不管状态空间按照哪一个Hard Partitioning方案做分类,它都有对应后续的对转移矩阵和概率空间的粗粒化方案(公式(1)和(2))<ref name=":1" />,并满足上面提到的粗粒化的两个规则。
    
但是,其中的某些分组方案lumpable,也有某些分组方案non-lumpable。
 
但是,其中的某些分组方案lumpable,也有某些分组方案non-lumpable。
第182行: 第182行:  
[[文件:Lump fig1.png|缩略图|398x398像素|图2:Zhang<ref name=":0" /> 文章中的示意图。图中左面四个矩阵都是lumpable马尔科夫矩阵,而右面的P_2是一个噪声矩阵,(P_1)^T P_2 = 0|替代=]]
 
[[文件:Lump fig1.png|缩略图|398x398像素|图2:Zhang<ref name=":0" /> 文章中的示意图。图中左面四个矩阵都是lumpable马尔科夫矩阵,而右面的P_2是一个噪声矩阵,(P_1)^T P_2 = 0|替代=]]
   −
由上面的lumpability公式3中我们能获得一个直观上的说法:当马尔科夫矩阵存在block结构,或者状态明显可被分成几类的时候,根据这样的partition,该矩阵就会lumpable,如图2中的<math>\bar{P}</math>所示,把相同的状态(行向量)分成一类的partition显然lumpable。
+
由上面的lumpability公式(3)中我们能获得一个直观上的说法:当马尔科夫矩阵存在block结构,或者状态明显可被分成几类的时候,根据这样的partition,该矩阵就会lumpable,如图2中的<math>\bar{P}</math>所示,把相同的状态(行向量)分成一类的partition显然lumpable。
    
但是,有时候有些lumpable的矩阵的状态排序被打乱了(如图一中的<math>P_1</math>),或者矩阵包含了如<math>P_2</math>的噪声(如图2中的<math>P</math>,<math>P = P_1 + P_2</math>,<math>P_1^TP_2 = 0</math>)。
 
但是,有时候有些lumpable的矩阵的状态排序被打乱了(如图一中的<math>P_1</math>),或者矩阵包含了如<math>P_2</math>的噪声(如图2中的<math>P</math>,<math>P = P_1 + P_2</math>,<math>P_1^TP_2 = 0</math>)。
第199行: 第199行:  
</math>
 
</math>
   −
其中,<math>v_s</math>是第s类<math>\Omega_s</math>的特征向量。
+
其中,<math>v_s</math>是第<math>s</math>类<math>\Omega_s</math>的特征向量。
    
这个算法的意思是在最优的partition中,<math>\Omega_s</math>中的状态<math>i</math>的右奇异向量会和<math>v_s</math>距离最小,也就是说,让每个微观态的右特征向量和它对应的宏观态的右特征向量尽可能接近。
 
这个算法的意思是在最优的partition中,<math>\Omega_s</math>中的状态<math>i</math>的右奇异向量会和<math>v_s</math>距离最小,也就是说,让每个微观态的右特征向量和它对应的宏观态的右特征向量尽可能接近。
97

个编辑