更改

添加4,860字节 、 2024年9月18日 (星期三)
无编辑摘要
第21行: 第21行:     
下面我们用一些例子来说明对涌现不同层次的描述。
 
下面我们用一些例子来说明对涌现不同层次的描述。
 +
 +
涌现通常被理解为一个过程,该过程导致出现的结构并未直接由控制系统的定义约束和瞬时力描述。随着时间的推移,“新特征”出现在运动方程直接指定的尺度之外。比如一堆随机运动的粒子,虽然瞬时力可以用运动方程描述,但是从宏观尺度上会表现出压强、体积以及温度等“新特征”。我们需要明确“特征”是什么以及它“新”在哪里。否则这一概念几乎没有内容,因为几乎任何时间依赖的系统都会表现出涌现特征。
 +
 +
举两个例子来说明斑图涌现的特征,一个例子是确定性混沌,确定性运动方程随着时间的推移导致了看似不可预测的行为。系统从初始条件映射到后来的状态,变得极为复杂,以至于观察者既无法足够准确地测量系统,也无法以足够的计算能力预测未来的行为。这种混沌的涌现既是非线性动力学系统复杂行为的产物,也是观测者能力的限制。另一个例子是二维的自避免随机游走,粒子的逐步行为由随机方程直接规定:每次移动时,它朝随机方向移动,除非是刚刚离开的方向。经过一段时间,结果是路径描绘出一个自相似的分形结构。在这种情况下,分形结构从大部分随机的逐步运动中涌现出来。
 +
 +
第一个例子的新增特征是不可预测性;第二个例子则是自相似性。在这两种情况下的“新颖性”都因其涌现特征与系统的定义特征直接对立而加剧:完全的确定性在混沌下隐藏,而几乎完全的随机性下则显现出自相似性的有序性。但这种涌现发生在谁的眼中?更具体地说,这些涌现特征对谁而言是“新”的?混沌动力学系统的状态在应用确定性函数时总是移动到唯一的下一个状态。显然,系统状态并不知道它的行为是不可预测的。对于随机游走,“分形性”不在执行局部步骤的粒子“眼中”,这本身就是定义上的,两种情况下的新颖性都在于系统外的观察者眼中。
 +
 +
实际上,检测到的斑图通常是通过观察者选择的统计数据来隐含假定的,可能某些“斑图”的功能表现与现象的数学模型一致,但这些模型本身依赖于一系列理论假设。简而言之,在斑图形成领域,“斑图”通常是被猜测出来的,观察者通过固定的规律库预期这些结构,然后再进行验证。类似于通信频道的类比,观察者就像是一个已经手握密码本的接收者。任何未能通过密码本解码的信号本质上都是噪声,即观察者未能识别的斑图。
 +
 +
在系统内部的协调行为中,有一种斑图涌现变得重要,即这些模式在系统的其他结构中显现其“新颖性”。由于没有外部的参照来定义新颖性或斑图,我们可以将这个过程称为“内在”涌现。在高效资本市场中,竞争性个体根据从集体行为中涌现出的最优定价控制其个人生产-投资和股票所有权策略。对于个体的资源配置决策而言,通过市场的集体行为涌现出的价格是准确的信号,“完全反映”了所有可用信息,这一点至关重要。内在涌现的独特之处在于形成的斑图赋予了额外的功能性,支持全局信息处理,如设定最优价格。这种方法的不同之处在于,它基于显式的方法来检测嵌入在非线性过程中的计算。更具体地说,以下假设是,在内在涌现过程中,内在计算能力的增加可以被利用,从而赋予系统额外的功能性。
 +
 +
=== 进化的动力系统模型 ===
 +
可以用生物进化的思想来解释内在涌现的问题,一个高度有序系统是怎么从混沌中涌现的。但是它在解释目前生命形式的多样性方面所起的作用不那么具有预测性。因此将宇宙视为一个确定性动力系统(DS),并把它简化为包括一个环境和一组适应性的观察者或“智能体”。智能体(Agent)是一个随机动力系统(SDS),它试图构建和维持一个对其环境具有最大预测能力的内部模型。每个智能体的环境是其他智能体的集合。在任何给定的时刻,智能体的感知系统是当前环境状态的投影。也就是说,环境状态被智能体的感官装置所隐藏。随着时间的推移,感官装置产生一系列测量,这些测量引导智能体利用其可用资源(下图的基质)来构建内部模型。基于内部模型捕捉到的规律,智能体通过效应器采取行动,最终改变环境状态。如果智能体可以将测量结果尽可能划分随机和确定的部分,然后尽可能捕捉确定的规律,智能体就能利用环境中的更多规律,这种优势会提高智能体的生存能力。
    
==复杂度量化==
 
==复杂度量化==
第122行: 第135行:  
===因果态的定义===
 
===因果态的定义===
   −
在计算力学中,宇宙被视为一个确定性动力系统(DS),即使规则和初始条件是确定的,随着规模的增长,系统也会变得极为复杂。由于系统内的智能体(Agent)的计算资源有限,无法测量和预测其内外部环境的所有行为,这些不能预测的部分对智能体来说就相当于是随机扰动,所以智能体被视为一个随机动力系统(SDS)。智能体试图构建和维持一个对其环境具有最大预测能力的内部模型,以提高其自身对环境的适应性和生存能力。
+
在计算力学中,宇宙被视为一个确定性动力系统(DS),即使规则和初始条件是确定的,随着规模的增长,系统也会变得极为复杂。由于系统内的智能体的计算资源有限,无法测量和预测其内外部环境的所有行为,这些不能预测的部分对智能体来说就相当于是随机扰动,所以智能体被视为一个随机动力系统(SDS)。智能体试图构建和维持一个对其环境具有最大预测能力的内部模型,以提高其自身对环境的适应性和生存能力。
    
智能体对外部环境的测量精度一般都是有限的,测量结果只能描述外部环境的“模糊状态”,智能体需要对测量结果粗粒化后才能识别“模糊状态”中的模式。若将测量对象过去未来的所有信息视为限制在离散值、离散时间上的稳定[[随机过程]],用双无限序列可数集合<math>\overleftrightarrow{S}=⋯s_{-2} s_{-1} s_0 s_1 s_2…</math>表示,则测量结果为<math>\overleftrightarrow{S}</math>中任意随机变量的序列。基于时间<math>t</math>可以将<math>\overleftrightarrow{S}</math>分为单侧前向序列<math>s_t^→=s_t s_{t+1} s_{t+2} s_{t+3}…</math>和单侧后向序列<math>s_t^←=⋯s_{t-3} s_{t-2} s_{t-1} </math>两个部分,所有可能的未来序列<math>s_t^→</math>形成的集合记作<math> \overrightarrow{S}</math>,所有可能的历史序列<math>\overleftarrow{s_t}</math>形成的集合记作<math> \overleftarrow{S}</math>。
 
智能体对外部环境的测量精度一般都是有限的,测量结果只能描述外部环境的“模糊状态”,智能体需要对测量结果粗粒化后才能识别“模糊状态”中的模式。若将测量对象过去未来的所有信息视为限制在离散值、离散时间上的稳定[[随机过程]],用双无限序列可数集合<math>\overleftrightarrow{S}=⋯s_{-2} s_{-1} s_0 s_1 s_2…</math>表示,则测量结果为<math>\overleftrightarrow{S}</math>中任意随机变量的序列。基于时间<math>t</math>可以将<math>\overleftrightarrow{S}</math>分为单侧前向序列<math>s_t^→=s_t s_{t+1} s_{t+2} s_{t+3}…</math>和单侧后向序列<math>s_t^←=⋯s_{t-3} s_{t-2} s_{t-1} </math>两个部分,所有可能的未来序列<math>s_t^→</math>形成的集合记作<math> \overrightarrow{S}</math>,所有可能的历史序列<math>\overleftarrow{s_t}</math>形成的集合记作<math> \overleftarrow{S}</math>。
276

个编辑