更改

添加192字节 、 2024年9月21日 (星期六)
第578行: 第578行:  
在看待一个马尔科夫转移矩阵时,我们可以把它想象成一个网络的邻接矩阵。节点为状态,连边为状态转移概率,而粗粒化则是对这个网络做降维。同时离散状态的马尔科夫链,状态空间的大小等于马尔科夫链的大小。粗粒化可以看作对状态空间做分组并投影到新的状态空间。从概率论出发,把状态的发生看作事件,通过计算事件发生的频率来构建概率空间。在降维表达事件的同时也构建了新的概率空间。这三种出发点看似互有联系,但是具体关心的东西不同。第一种关注状态之间的连边拓扑结构,第二种关注不同状态的历史分布和相似性,第三种关注如何降维表达整个系统中的事件概率分布。投影降维、节点分类都是常见的简化方法。
 
在看待一个马尔科夫转移矩阵时,我们可以把它想象成一个网络的邻接矩阵。节点为状态,连边为状态转移概率,而粗粒化则是对这个网络做降维。同时离散状态的马尔科夫链,状态空间的大小等于马尔科夫链的大小。粗粒化可以看作对状态空间做分组并投影到新的状态空间。从概率论出发,把状态的发生看作事件,通过计算事件发生的频率来构建概率空间。在降维表达事件的同时也构建了新的概率空间。这三种出发点看似互有联系,但是具体关心的东西不同。第一种关注状态之间的连边拓扑结构,第二种关注不同状态的历史分布和相似性,第三种关注如何降维表达整个系统中的事件概率分布。投影降维、节点分类都是常见的简化方法。
   −
关于具体的粗粒化马尔科夫链的方法,请参考[[马尔科夫链的粗粒化]]。
+
lumpable的马尔科夫矩阵可以被重新排列成几个block,这种lumpable的矩阵的动力学可逆性也会很高,在这种情况下动力学可逆性和 Lumpability是一致的。关于具体的粗粒化马尔科夫链的方法,请参考[[马尔科夫链的粗粒化]]。
    
==参考文献==
 
==参考文献==
225

个编辑