更改

第129行: 第129行:  
对于每个条件,boid模拟运行了25次,每次运行持续5000个时间步;在每次运行中,记录了每个boid的x和y坐标以及全局质心。在计算格兰杰涌现性之前,进行了几个预处理步骤。为了降低数据集的维度,并增强对边界效应的鲁棒性,将每对x和y坐标转换为反映环境中心距离的单个变量。前500个数据点被移除,以消除初始瞬态效应,结果得到的时间序列被转换为零均值的等效时间序列。最后,为了确保协方差平稳性<ref name="Seth_causal_connectivity_evolved_neural_networks">{{cite journal|author=Seth A|title=Causal connectivity of evolved neural networks during behavior|journal=Network: Computation in Neural Systems|year=2005|volume=16|issue=35–54}}</ref>,对每个时间序列进行了一级差分处理。预处理完成后,在每个条件下的每次运行中,使用最小二乘回归分别计算了CM的线性和非线性格兰杰涌现性。我选择了模型阶数<math>p = 5</math>和(用于非线性分析的)多项式阶数<math>q=3</math>。模型阶数是基于所有75次运行的平均Akaike信息准则<ref name="Seth_measuring_autonomy" />选定的。
 
对于每个条件,boid模拟运行了25次,每次运行持续5000个时间步;在每次运行中,记录了每个boid的x和y坐标以及全局质心。在计算格兰杰涌现性之前,进行了几个预处理步骤。为了降低数据集的维度,并增强对边界效应的鲁棒性,将每对x和y坐标转换为反映环境中心距离的单个变量。前500个数据点被移除,以消除初始瞬态效应,结果得到的时间序列被转换为零均值的等效时间序列。最后,为了确保协方差平稳性<ref name="Seth_causal_connectivity_evolved_neural_networks">{{cite journal|author=Seth A|title=Causal connectivity of evolved neural networks during behavior|journal=Network: Computation in Neural Systems|year=2005|volume=16|issue=35–54}}</ref>,对每个时间序列进行了一级差分处理。预处理完成后,在每个条件下的每次运行中,使用最小二乘回归分别计算了CM的线性和非线性格兰杰涌现性。我选择了模型阶数<math>p = 5</math>和(用于非线性分析的)多项式阶数<math>q=3</math>。模型阶数是基于所有75次运行的平均Akaike信息准则<ref name="Seth_measuring_autonomy" />选定的。
   −
图2显示了每个条件下质心的平均线性和非线性格兰杰涌现性。结果证实了高格兰杰涌现性与引人注目的群集行为相关,线性和非线性度量均显示,条件<math>H</math>下的格兰杰涌现性显著高于条件<math>L</math>和<math>R</math>。条件<math>H</math>和<math>L</math>下的所有格兰杰涌现性值都是显著的(格兰杰自主性和格兰杰因果关系的<math>P</math>值均小于10<sup>-5</sup>,双尾<math>t</math>检验);而条件<math>R</math>下的结果则不显著。
+
图2显示了每个条件下质心的平均线性和非线性格兰杰涌现性。结果证实了高格兰杰涌现性与引人注目的群集行为相关,线性和非线性度量均显示,条件<math>H</math>下的格兰杰涌现性显著高于条件<math>L</math>和<math>R</math>。条件<math>H</math>和<math>L</math>下的所有格兰杰涌现性值都是显著的(格兰杰自主性和格兰杰因果关系的<math>P</math>值均小于<math>10^{-5}</math> ,双尾<math>t</math>检验);而条件<math>R</math>下的结果则不显著。
    
为了测试boid模型中不同参数组合下格兰杰涌现性的行为,我在参数空间 α(1, 2, 3) ∈ [0.0, 0.1, …, 1.0] 中计算了每个参数向量的线性和非线性格兰杰涌现性。由于参数α<sub>3</sub>和α<sub>4</sub>都影响同一规则(速度匹配),它们被配对在一起进行评估,并为每个向量进行了三次评估,总共需要 11 × 11 × 11 × 3 = 3993 次评估。图3显示了穿过三维参数空间的三个正交剖面的格兰杰涌现性;在每个剖面中,向量α<sub>H</sub>(条件 H)由绿色线的交点标记。
 
为了测试boid模型中不同参数组合下格兰杰涌现性的行为,我在参数空间 α(1, 2, 3) ∈ [0.0, 0.1, …, 1.0] 中计算了每个参数向量的线性和非线性格兰杰涌现性。由于参数α<sub>3</sub>和α<sub>4</sub>都影响同一规则(速度匹配),它们被配对在一起进行评估,并为每个向量进行了三次评估,总共需要 11 × 11 × 11 × 3 = 3993 次评估。图3显示了穿过三维参数空间的三个正交剖面的格兰杰涌现性;在每个剖面中,向量α<sub>H</sub>(条件 H)由绿色线的交点标记。
2,479

个编辑