因此,<math>\mathbf{M}</math> 的秩等于非零奇异值的个数,也就是 <math>\mathbf{\Sigma}</math> 中非零对角元素的个数。在数值线性代数中,我们可以用奇异值确定矩阵的有效秩,因为舍入误差(rounding error)可能导致秩亏矩阵出现小但非零的奇异值。我们通常认为超过显著间隙的奇异值在数值上等同于零。 | 因此,<math>\mathbf{M}</math> 的秩等于非零奇异值的个数,也就是 <math>\mathbf{\Sigma}</math> 中非零对角元素的个数。在数值线性代数中,我们可以用奇异值确定矩阵的有效秩,因为舍入误差(rounding error)可能导致秩亏矩阵出现小但非零的奇异值。我们通常认为超过显著间隙的奇异值在数值上等同于零。 |