当我们能找到两个线性独立的左(或右)奇异向量时,我们称该奇异值为简并(degenerate)的。如果 <math>\mathbf{u}_1</math> 和 <math>\mathbf{u}_2</math> 是对应奇异值 <math>\sigma</math> 的两个左奇异向量,那么这两个向量的任何归一化线性组合也是对应奇异值 <math>\sigma</math> 的左奇异向量。右奇异向量也有类似性质。独立的左奇异向量和右奇异向量数量相同,它们出现在 <math>\mathbf{U}</math> 和 <math>\mathbf{V}</math> 的相同列中,对应 <math>\mathbf{\Sigma}</math> 中具有相同值 <math>\sigma</math> 的对角元素。 | 当我们能找到两个线性独立的左(或右)奇异向量时,我们称该奇异值为简并(degenerate)的。如果 <math>\mathbf{u}_1</math> 和 <math>\mathbf{u}_2</math> 是对应奇异值 <math>\sigma</math> 的两个左奇异向量,那么这两个向量的任何归一化线性组合也是对应奇异值 <math>\sigma</math> 的左奇异向量。右奇异向量也有类似性质。独立的左奇异向量和右奇异向量数量相同,它们出现在 <math>\mathbf{U}</math> 和 <math>\mathbf{V}</math> 的相同列中,对应 <math>\mathbf{\Sigma}</math> 中具有相同值 <math>\sigma</math> 的对角元素。 |