打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
基于格兰杰因果量化涌现
(查看源代码)
2024年10月26日 (六) 11:32的版本
添加753字节
、
2024年10月26日 (星期六)
→格兰杰因果测量
第42行:
第42行:
<math>gc_{2 \to 1} = \log \left( \frac{\mathrm{var}(\xi_{1R(12)})}{\mathrm{var}(\xi_{1U})} \right),</math>
<math>gc_{2 \to 1} = \log \left( \frac{\mathrm{var}(\xi_{1R(12)})}{\mathrm{var}(\xi_{1U})} \right),</math>
−
其中,<math>\xi_{1R(12)}</math>是从省略了第一个方程中的 <math>A_{12,j}</math>(对所有 <math>j</math>)系数的模型中得出的,而<math> \xi_{1U} </math> 是从完整模型中得出的。重要的是,格兰杰因果关系很容易推广到多变量的情况,在这种情况下,检验的是在多个变量<math>X₂...Xₙ</math>的上下文中的格兰杰因果关系(对所有 <math>Xᵢ ≠ Xⱼ</math>)。在这种情况下,如果当所有其他变量 <math>X₃...Xₙ</math> 的活动也包含在回归模型中时,知道 <math>X₂</math> 会减少<math> X₁</math> 预测误差的方差,那么<math>X₂</math>对<math> X₁</math>具有格兰杰因果性(参见下文)。有关格兰杰因果关系的教程介绍,请参阅 Seth<ref name="Seth_granger_causality" />。
+
其中,
<math>gc_{2 \to 1}</math> 表示从变量 <math>X_2</math> 到变量 <math>X_1</math> 的格兰杰因果性测量值。<math>\xi_{1R(12)}</math> 是从省略了 <math>X_2</math> 对 <math>X_1</math> 影响的受限模型中得到的预测误差;<math>\xi_{1U}</math> 是从包含 <math>X_2</math> 对 <math>X_1</math> 影响的完整模型中得到的预测误差。通过计算 <math>\frac{\text{var}(\xi_{1R(12)})}{\text{var}(\xi_{1U})}</math> 的对数,<math>gc_{2 \to 1}</math> 可以量化 <math>X_2</math> 对 <math>X_1</math> 的预测贡献。如果 <math>gc_{2 \to 1}</math> 的值为正,说明包含 <math>X_2</math> 能显著减少 <math>X_1</math> 的预测误差,表明 <math>X_2</math> 对 <math>X_1</math> 有格兰杰因果性。
<math>\xi_{1R(12)}</math>是从省略了第一个方程中的 <math>A_{12,j}</math>(对所有 <math>j</math>)系数的模型中得出的,而<math> \xi_{1U} </math> 是从完整模型中得出的。重要的是,格兰杰因果关系很容易推广到多变量的情况,在这种情况下,检验的是在多个变量<math>X₂...Xₙ</math>的上下文中的格兰杰因果关系(对所有 <math>Xᵢ ≠ Xⱼ</math>)。在这种情况下,如果当所有其他变量 <math>X₃...Xₙ</math> 的活动也包含在回归模型中时,知道 <math>X₂</math> 会减少<math> X₁</math> 预测误差的方差,那么<math>X₂</math>对<math> X₁</math>具有格兰杰因果性(参见下文)。有关格兰杰因果关系的教程介绍,请参阅 Seth<ref name="Seth_granger_causality" />。
=== 格兰杰自主性测量 ===
=== 格兰杰自主性测量 ===
相信未来
2,435
个编辑