更改

添加3字节 、 2024年10月27日 (星期日)
第56行: 第56行:     
=== '''统计复杂度''' ===
 
=== '''统计复杂度''' ===
粗略地说,柯式复杂度[math]\displaystyle{ K(x) }[/math]需要考虑对象中的所有比特,包括随机状态。其主要后果是[math]\displaystyle{ K(x) }[/math]中数值[math]\displaystyle{ x }[/math]被随机性的生成所主导,因此掩盖了对象以及其生成过程中的重要结构。相比之下,统计复杂度[math]\displaystyle{ C_μ(x) }[/math]剔除了通用图灵机在模拟中随机比特时所花费的计算努力。统计复杂度的一个特征是,对于完全随机对象[math]\displaystyle{ C_μ(x)=0 }[/math],如抛硬币产生的序列,同时对于简单的周期性过程,如[math]\displaystyle{ x=00000000…0 }[/math]时,也有[math]\displaystyle{ C_μ(x)=0 }[/math]。因此,统计复杂度的值对于(简单的)周期性过程和完全随机过程都很小。如果[math]\displaystyle{ s^L }[/math]表示[math]\displaystyle{ x }[/math]的前[math]\displaystyle{ L }[/math]个符号,那么复杂性之间的关系简单地为:
+
粗略地说,柯式复杂度[math]\displaystyle{ K(x) }[/math]需要考虑对象中的所有比特,包括随机状态。其主要后果是[math]\displaystyle{ K(x) }[/math]中数值[math]\displaystyle{ x }[/math]被随机性的生成所主导,因此掩盖了对象以及其生成过程中的重要结构。相比之下,统计复杂度[math]\displaystyle{ C_μ(x) }[/math]剔除了通用图灵机在模拟随机比特时所花费的计算努力。统计复杂度的一个特征是,对于完全随机对象,有[math]\displaystyle{ C_μ(x)=0 }[/math],如抛硬币产生的序列。同时对于简单的周期性过程,如[math]\displaystyle{ x=00000000…0 }[/math]时,也有[math]\displaystyle{ C_μ(x)=0 }[/math]。因此,统计复杂度的值对于(简单的)周期性过程和完全随机过程都很小。如果[math]\displaystyle{ s^L }[/math]表示[math]\displaystyle{ x }[/math]的前[math]\displaystyle{ L }[/math]个符号,那么复杂性之间的关系简单地为:
    
[math]\displaystyle{ K(s^L )≈C_μ (s^L )+h_μ L }[/math]
 
[math]\displaystyle{ K(s^L )≈C_μ (s^L )+h_μ L }[/math]
786

个编辑