更改

大小无更改 、 2024年10月29日 (星期二)
第79行: 第79行:  
In addition, in 2020, Rosas et al. proposed a method based on information decomposition to define causal emergence in systems from an information theory perspective and quantitatively characterize emergence based on synergistic information or redundant information. The so-called information decomposition is a new method to analyze the complex interrelationships of various variables in complex systems. By decomposing information, each partial information is represented by an information atom. At the same time, each partial information is projected into the information atom with the help of an information lattice diagram. Both synergistic information and redundant information can be represented by corresponding information atoms. This method is based on the non-negative decomposition theory of multivariate information proposed by Williams and Beer. In the paper, partial information decomposition (PID) is used to decompose the mutual information between microstates and macrostates. However, the PID framework can only decompose the mutual information between multiple source variables and one target variable. Rosas extended this framework and proposed the integrated information decomposition method <math>\Phi ID</math>.
 
In addition, in 2020, Rosas et al. proposed a method based on information decomposition to define causal emergence in systems from an information theory perspective and quantitatively characterize emergence based on synergistic information or redundant information. The so-called information decomposition is a new method to analyze the complex interrelationships of various variables in complex systems. By decomposing information, each partial information is represented by an information atom. At the same time, each partial information is projected into the information atom with the help of an information lattice diagram. Both synergistic information and redundant information can be represented by corresponding information atoms. This method is based on the non-negative decomposition theory of multivariate information proposed by Williams and Beer. In the paper, partial information decomposition (PID) is used to decompose the mutual information between microstates and macrostates. However, the PID framework can only decompose the mutual information between multiple source variables and one target variable. Rosas extended this framework and proposed the integrated information decomposition method <math>\Phi ID</math>.
   −
=== Resent Work ===
+
=== Recent Work ===
 
Barnett et al. [40] proposed the concept of dynamical decoupling by judging the decoupling of macroscopic and microscopic dynamics based on transfer entropy to judge the occurrence of emergence. That is, emergence is characterized as the macroscopic variables and microscopic variables being independent of each other and having no causal relationship, which can also be regarded as a causal emergence phenomenon. In 2024, Zhang Jiang et al. [26] proposed a new causal emergence theory based on singular value decomposition. The core idea of this theory is to point out that the so-called causal emergence is actually equivalent to the emergence of dynamical reversibility. Given the Markov transition matrix of a system, by performing singular value decomposition on it, the sum of the <math>\alpha</math> power of the singular values is defined as the reversibility measure of Markov dynamics (<math>\Gamma_{\alpha}\equiv \sum_{i=1}^N\sigma_i^{\alpha}</math>), where [math]\sigma_i[/math] is the singular value. This index is highly correlated with effective information and can also be used to characterize the causal effect strength of dynamics. According to the spectrum of singular values, this method can directly define the concepts of clear emergence and vague emergence without explicitly defining a coarse-graining scheme.
 
Barnett et al. [40] proposed the concept of dynamical decoupling by judging the decoupling of macroscopic and microscopic dynamics based on transfer entropy to judge the occurrence of emergence. That is, emergence is characterized as the macroscopic variables and microscopic variables being independent of each other and having no causal relationship, which can also be regarded as a causal emergence phenomenon. In 2024, Zhang Jiang et al. [26] proposed a new causal emergence theory based on singular value decomposition. The core idea of this theory is to point out that the so-called causal emergence is actually equivalent to the emergence of dynamical reversibility. Given the Markov transition matrix of a system, by performing singular value decomposition on it, the sum of the <math>\alpha</math> power of the singular values is defined as the reversibility measure of Markov dynamics (<math>\Gamma_{\alpha}\equiv \sum_{i=1}^N\sigma_i^{\alpha}</math>), where [math]\sigma_i[/math] is the singular value. This index is highly correlated with effective information and can also be used to characterize the causal effect strength of dynamics. According to the spectrum of singular values, this method can directly define the concepts of clear emergence and vague emergence without explicitly defining a coarse-graining scheme.
150

个编辑