更改

添加45字节 、 2024年11月3日 (星期日)
第9行: 第9行:     
==== Emergence ====
 
==== Emergence ====
[[Emergence]] has always been an important characteristic in [[Complex Systems]] and a core concept in many discussions about system [[complexity]] and the relationship between the macroscopic and microscopic levels <ref>Meehl P E, Sellars W. The concept of emergence[J]. Minnesota studies in the philosophy of science, 1956, 1239-252.</ref><ref name=":7">Holland J H. Emergence: From chaos to order[M]. OUP Oxford, 2000.</ref>. Emergence can be simply understood as the whole being greater than the sum of its parts, that is, the whole exhibits new characteristics that the individuals constituting it do not possess <ref>Anderson P W. More is different: broken symmetry and the nature of the hierarchical structure of science[J]. Science, 1972, 177(4047): 393-396.</ref>. Although scholars have pointed out the existence of emergence phenomena in various fields <ref name=":7" /><ref>Holland, J.H. Hidden Order: How Adaptation Builds Complexity; Addison Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1996.</ref>, such as the [[collective behavior]] of birds <ref>Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 27–31 July 1987; pp. 25–34.</ref>, the formation of [[consciousness]] in the brain, and the [[emergent]] capabilities of large language models <ref>Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.; Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler, D.; et al. Emergent abilities of large language models. arXiv 2022, arXiv:2206.07682.</ref>, there is currently no universally accepted unified understanding of this phenomenon. Previous research on emergence mostly stayed at the qualitative stage. For example, Bedau et al. <ref name=":9">Bedau, M.A. Weak emergence. Philos. Perspect. 1997, 11, 375–399. [CrossRef] </ref><ref>Bedau, M. Downward causation and the autonomy of weak emergence. Principia Int. J. Epistemol. 2002, 6, 5–50. </ref> conducted classified research on emergence, dividing emergence into nominal emergence <ref name=":10">Harré, R. The Philosophies of Science; Oxford University Press: New York, NY, USA, 1985.</ref><ref name=":11">Baas, N.A. Emergence, hierarchies, and hyperstructures. In Artificial Life III, SFI Studies in the Science of Complexity, XVII; Routledge: Abingdon, UK, 1994; pp. 515–537.</ref>, [[weak emergence]] <ref name=":9" /><ref>Newman, D.V. Emergence and strange attractors. Philos. Sci. 1996, 63, 245–261. [CrossRef]</ref>, and [[strong emergence]] <ref name=":12">Kim, J. ‘Downward causation’ in emergentism and nonreductive physicalism. In Emergence or Reduction; Walter de Gruyter: Berlin, Germany, 1992; pp. 119–138. </ref><ref name=":13">O’Connor, T. Emergent properties. Am. Philos. Q. 1994, 31, 91–104</ref>.
+
[[Emergence]] has always been an important characteristic in [[complex systems]] and a core concept in many discussions about system [[complexity]] and the relationship between the macroscopic and microscopic levels <ref>Meehl P E, Sellars W. The concept of emergence[J]. Minnesota studies in the philosophy of science, 1956, 1239-252.</ref><ref name=":7">Holland J H. Emergence: From chaos to order[M]. OUP Oxford, 2000.</ref>. Emergence can be simply understood as the whole being greater than the sum of its parts, that is, the whole exhibits new characteristics that the individuals constituting it do not possess <ref>Anderson P W. More is different: broken symmetry and the nature of the hierarchical structure of science[J]. Science, 1972, 177(4047): 393-396.</ref>. Although scholars have pointed out the existence of emergence phenomena in various fields <ref name=":7" /><ref>Holland, J.H. Hidden Order: How Adaptation Builds Complexity; Addison Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1996.</ref>, such as the [[collective behavior]] of birds <ref>Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 27–31 July 1987; pp. 25–34.</ref>, the formation of [[consciousness]] in the brain, and the [[emergent]] capabilities of large language models <ref>Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.; Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler, D.; et al. Emergent abilities of large language models. arXiv 2022, arXiv:2206.07682.</ref>, there is currently no universally accepted unified understanding of this phenomenon. Previous research on emergence mostly stayed at the qualitative stage. For example, Bedau et al. <ref name=":9">Bedau, M.A. Weak emergence. Philos. Perspect. 1997, 11, 375–399. [CrossRef] </ref><ref>Bedau, M. Downward causation and the autonomy of weak emergence. Principia Int. J. Epistemol. 2002, 6, 5–50. </ref> conducted classified research on emergence, dividing emergence into nominal emergence <ref name=":10">Harré, R. The Philosophies of Science; Oxford University Press: New York, NY, USA, 1985.</ref><ref name=":11">Baas, N.A. Emergence, hierarchies, and hyperstructures. In Artificial Life III, SFI Studies in the Science of Complexity, XVII; Routledge: Abingdon, UK, 1994; pp. 515–537.</ref>, [[weak emergence]] <ref name=":9" /><ref>Newman, D.V. Emergence and strange attractors. Philos. Sci. 1996, 63, 245–261. [CrossRef]</ref>, and [[strong emergence]] <ref name=":12">Kim, J. ‘Downward causation’ in emergentism and nonreductive physicalism. In Emergence or Reduction; Walter de Gruyter: Berlin, Germany, 1992; pp. 119–138. </ref><ref name=":13">O’Connor, T. Emergent properties. Am. Philos. Q. 1994, 31, 91–104</ref>.
      −
Nominal emergence can be understood as attributes and patterns that can be possessed by the macroscopic level but not by the microscopic level. For example, the shape of a circle composed of several pixels is a kind of nominal emergence <ref name=":10" /><ref name=":11" />.
+
* [[Nominal emergence]] can be understood as attributes and patterns that can be possessed by the macroscopic level but not by the microscopic level. For example, the shape of a circle composed of several pixels is a kind of [[nominal emergence]] <ref name=":10" /><ref name=":11" />.
      −
Weak emergence refers to the fact that macroscopic-level attributes or processes are generated by complex interactions between individual components. Or weak emergence can also be understood as a characteristic that can be simulated by a computer in principle. Due to the principle of computational irreducibility, even if weak emergence characteristics can be simulated, they still cannot be easily reduced to microscopic-level attributes. For weak emergence, the causes of its pattern generation may come from both microscopic and macroscopic levels <ref name=":12" /><ref name=":13" />. Therefore, the causal relationship of emergence may coexist with microscopic causal relationships.
+
* [[Weak emergence]] refers to the fact that macroscopic-level attributes or processes are generated by complex interactions between individual components. Or weak emergence can also be understood as a characteristic that can be simulated by a computer in principle. Due to the principle of [[computational irreducibility]], even if weak emergence characteristics can be simulated, they still cannot be easily reduced to microscopic-level attributes. For weak emergence, the causes of its pattern generation may come from both microscopic and macroscopic levels <ref name=":12" /><ref name=":13" />. Therefore, the causal relationship of emergence may coexist with microscopic causal relationships.
      −
As for strong emergence, there are many controversies. It refers to macroscopic-level attributes that cannot be reduced to microscopic-level attributes in principle, including the interactions between individuals. In addition, Jochen Fromm further interprets strong emergence as the causal effect of downward causation <ref>Fromm, J. Types and forms of emergence. arXiv 2005, arXiv:nlin/0506028</ref>. Downward causation refers to the causal force from the macroscopic level to the microscopic level. However, there are many controversies about the concept of downward causation itself <ref>Bedau, M.A.; Humphreys, P. Emergence: Contemporary Readings in Philosophy and Science; MIT Press: Cambridge, MA, USA, 2008. </ref><ref>Yurchenko, S.B. Can there be a synergistic core emerging in the brain hierarchy to control neural activity by downward causation? TechRxiv 2023 . [CrossRef] </ref>.
+
* As for [[strong emergence]], there are many controversies. It refers to macroscopic-level attributes that cannot be reduced to microscopic-level attributes in principle, including the interactions between individuals. In addition, Jochen Fromm further interprets strong emergence as the [[causal effect]] of [[downward causation]] <ref>Fromm, J. Types and forms of emergence. arXiv 2005, arXiv:nlin/0506028</ref>. [[Downward causation]] refers to the [[causal force]] from the macroscopic level to the microscopic level. However, there are many controversies about the concept of [[downward causation]] itself <ref>Bedau, M.A.; Humphreys, P. Emergence: Contemporary Readings in Philosophy and Science; MIT Press: Cambridge, MA, USA, 2008. </ref><ref>Yurchenko, S.B. Can there be a synergistic core emerging in the brain hierarchy to control neural activity by downward causation? TechRxiv 2023. [CrossRef] </ref>.
     
150

个编辑