打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
复杂网络中的因果涌现
(查看源代码)
2024年11月3日 (日) 12:26的版本
添加4字节
、
2024年11月3日 (星期日)
→梯度下降方法
第106行:
第106行:
输入:原始网络<math>A</math>;输出:宏观网络<math>B</math>以及对应的粗粒化方式<math>M</math>
输入:原始网络<math>A</math>;输出:宏观网络<math>B</math>以及对应的粗粒化方式<math>M</math>
−
解决方法:针对一个含有<math>N</math>个节点的网络<math>A</math>,随机初始化一个分组矩阵<math>M\in \
rm
{R}^{N×K}</math>,<math>K</math>表示分组的大小,其中<math>m_{iμ}=Pr(v_i\in v_{\mu})</math>,表示微节点<math>v_i</math>属于宏观节点<math>v_{\mu}</math>的概率,然后根据微观网络和分组矩阵构建宏观网络<math>B</math>,优化目标是最大化宏观网络的有效信息EI,使用带动量的[[梯度下降]]方法优化<math>M</math>。
+
解决方法:针对一个含有<math>N</math>个节点的网络<math>A</math>,随机初始化一个分组矩阵<math>M\in \
mathbb
{R}^{N×K}</math>,<math>K</math>表示分组的大小,其中<math>m_{iμ}=Pr(v_i\in v_{\mu})</math>,表示微节点<math>v_i</math>属于宏观节点<math>v_{\mu}</math>的概率,然后根据微观网络和分组矩阵构建宏观网络<math>B</math>,优化目标是最大化宏观网络的有效信息EI,使用带动量的[[梯度下降]]方法优化<math>M</math>。
时间复杂度:<math>O(N^3)</math>
时间复杂度:<math>O(N^3)</math>
相信未来
2,464
个编辑