更改

第97行: 第97行:  
输入:原始网络<math>A</math>;输出:宏观网络<math>B</math>以及对应的粗粒化方式
 
输入:原始网络<math>A</math>;输出:宏观网络<math>B</math>以及对应的粗粒化方式
   −
# 输入一个网络<math>A_m</math>,得到其[[转移矩阵]]<math>T_{A_m}</math>,然后进行矩阵的[[特征值分解]],得到特征值<math>Λ=\{λ_i\}</math>与特征向量<math>E=\{e_i\}</math>,构建新的<math>E’=\{λ_ie_i|λ_i≠0\}</math>(新的网络节点数量为<math>N'</math>)
+
# 针对一个含有<math>N</math>个节点的网络<math>A</math>,得到其[[转移矩阵]]<math>T</math>,然后进行矩阵的[[特征值分解]],得到特征值<math>Λ=\{λ_i\}</math>与特征向量<math>E=\{e_i\}</math>,构建新的<math>E’=\{λ_ie_i|λ_i≠0\}</math>(新的网络节点数量为<math>N'</math>)
 
# 依据<math>E'</math>计算节点间的距离矩阵<math>D_{N'×N'}</math>:
 
# 依据<math>E'</math>计算节点间的距离矩阵<math>D_{N'×N'}</math>:
 
## 如果节点<math>v_i</math>和<math>v_j</math>分别在对方的邻域中([[马尔可夫毯]]),则使用[[cosine]]计算两个节点的相似性作为距离
 
## 如果节点<math>v_i</math>和<math>v_j</math>分别在对方的邻域中([[马尔可夫毯]]),则使用[[cosine]]计算两个节点的相似性作为距离
2,464

个编辑