更改

第152行: 第152行:  
# 迭代T步,得到从1到T步的宏微观转移概率矩阵,<math>\{T_A^t\}_{t=1}^T</math>和<math>\{T_B^t\}_{t=1}^T</math>
 
# 迭代T步,得到从1到T步的宏微观转移概率矩阵,<math>\{T_A^t\}_{t=1}^T</math>和<math>\{T_B^t\}_{t=1}^T</math>
 
# 迭代1到T
 
# 迭代1到T
## <math>S_m(t) = (T_A^t)^T  S_m(0)</math>, 初始化一个长度为Z+1的分布<math>P_m(t) </math>, 其中<math>P_m(t) </math>的前Z个位置的数值等于<math>S_m(t)</math>中对应的Z个没有进行粗粒化的节点位置的值,<math>P_m(t) </math>中的第Z+1位置的数值等于<math>1-\sum_{i=1}^Z p^i_m(t) </math>
+
## <math>S_m(t) = (T_A^t)^T  S_m(0)</math>, 初始化一个长度为Z+1的分布<mathP_{M|m}(t)</math>, 其中<math>P_{M|m}(t)</math>的前Z个位置的数值等于<math>S_m(t)</math>中对应的Z个没有进行粗粒化的节点位置的值,<math>P_{M|m}(t)</math>中的第Z+1位置的数值等于<math>1-\sum_{i=1}^Z p^i_m(t) </math>
 
## <math>S_M(t) = (T_B^t)^T  S_M(0)</math>, 初始化一个长度为Z+1的分布<math>P_M(t) </math>, 其中<math>P_M(t) </math>的前Z个位置的数值等于<math>S_M(t)</math>中对应的Z个没有进行粗粒化的节点位置的值,<math>P_M(t) </math>中的第Z+1位置的数值等于<math>1-\sum_{i=1}^Z p^i_M(t) </math>
 
## <math>S_M(t) = (T_B^t)^T  S_M(0)</math>, 初始化一个长度为Z+1的分布<math>P_M(t) </math>, 其中<math>P_M(t) </math>的前Z个位置的数值等于<math>S_M(t)</math>中对应的Z个没有进行粗粒化的节点位置的值,<math>P_M(t) </math>中的第Z+1位置的数值等于<math>1-\sum_{i=1}^Z p^i_M(t) </math>
 
# 使用<math>P_M(t) </math>和<math>P_{M|m}(t) </math>之间的KL散度来衡量其不一致性(inconsistency),若结果为零则动力学一致, 公式为<math>inconsistency=\sum_{t=1}^T D_{KL}[P_M(t)||P_M(t)]</math>
 
# 使用<math>P_M(t) </math>和<math>P_{M|m}(t) </math>之间的KL散度来衡量其不一致性(inconsistency),若结果为零则动力学一致, 公式为<math>inconsistency=\sum_{t=1}^T D_{KL}[P_M(t)||P_M(t)]</math>
2,437

个编辑