更改

第52行: 第52行:  
对于集合<math> \overset{\leftarrow}{S}</math>的划分可以有很多种,若某一种划分能够在预测能力最强的同时又非常简洁,那么它肯定是最优的划分,我们把这种用最优的划分方法得到的状态称为[[因果态]]。因果态就是智能体对测量结果进行处理后,根据其内部模型(尤其是状态结构)识别出的斑图,并且这种斑图不随时间发生变化。形式化定义为:对于任意的时刻<math>t </math> 和<math>t^{'} </math>,给定过去状态<math> \overleftarrow{s_t}  </math>的条件下,未来状态<math> \overrightarrow{s} </math>的分布与给定过去状态<math> \overleftarrow{s_{t^{'}}} </math>的条件下,未来状态<math> \overrightarrow{s} </math>的分布相同。那么<math>t </math> 和<math>t^{'} </math>的关系就记作<math>t\sim t^{'} </math>,“<math>∼ </math> ” 表示由等效未来状态所引起的等价关系,也叫预测等价性(predictive equivalence),可以用公式表示为:<math>t\sim t^{'} \triangleq Pr(\overrightarrow{s}|\overleftarrow{s_t} )=Pr(\overrightarrow{s} |\overleftarrow{s_{t^{'}}} ) </math>,若<math>t </math> 和<math>t^{'} </math>对未来状态预测的分布相同,则定义他们具有相同的因果态(casual state)。
 
对于集合<math> \overset{\leftarrow}{S}</math>的划分可以有很多种,若某一种划分能够在预测能力最强的同时又非常简洁,那么它肯定是最优的划分,我们把这种用最优的划分方法得到的状态称为[[因果态]]。因果态就是智能体对测量结果进行处理后,根据其内部模型(尤其是状态结构)识别出的斑图,并且这种斑图不随时间发生变化。形式化定义为:对于任意的时刻<math>t </math> 和<math>t^{'} </math>,给定过去状态<math> \overleftarrow{s_t}  </math>的条件下,未来状态<math> \overrightarrow{s} </math>的分布与给定过去状态<math> \overleftarrow{s_{t^{'}}} </math>的条件下,未来状态<math> \overrightarrow{s} </math>的分布相同。那么<math>t </math> 和<math>t^{'} </math>的关系就记作<math>t\sim t^{'} </math>,“<math>∼ </math> ” 表示由等效未来状态所引起的等价关系,也叫预测等价性(predictive equivalence),可以用公式表示为:<math>t\sim t^{'} \triangleq Pr(\overrightarrow{s}|\overleftarrow{s_t} )=Pr(\overrightarrow{s} |\overleftarrow{s_{t^{'}}} ) </math>,若<math>t </math> 和<math>t^{'} </math>对未来状态预测的分布相同,则定义他们具有相同的因果态(casual state)。
   −
因果态的划分映射可以记作<math>\epsilon</math>,公式为<math> \epsilon{:}\overleftarrow{S}\mapsto2^{\overset{\leftarrow}{S}}</math>,其中<math> 2^{\overset{\leftarrow}{S}}</math>是<math> \overleftarrow{S}</math>的幂集。根据因果态的定义,则存在如下关系:<math>\epsilon(\stackrel{\leftarrow}{s})\equiv\{\stackrel\overrightarrow{s}^{\prime}|\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s})=\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel\overrightarrow{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s}^{\prime}),\mathrm{for~all~}\overrightarrow{s}\in\overrightarrow{S},\stackrel{\leftarrow}{s}^{\prime}\in\stackrel{\leftarrow}{S}\} </math>,其中<math>\mathcal{S} </math>为因果态的集合,<math>\stackrel{\leftarrow}{s} </math>为历史序列的随机变量。
+
因果态的划分映射可以记作<math>\epsilon</math>,公式为<math> \epsilon{:}\overleftarrow{S}\mapsto2^{\overset{\leftarrow}{S}}</math>,其中<math> 2^{\overset{\leftarrow}{S}}</math>是<math> \overleftarrow{S}</math>的幂集。根据因果态的定义,则存在如下关系:<math>{ \epsilon(\stackrel{\leftarrow}{s})\equiv\{\stackrel{\leftarrow}{s}^{\prime}|\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s})=\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s}^{\prime}),\mathrm{for~all~}\overrightarrow{s}\in\overrightarrow{S},\stackrel{\leftarrow}{s}^{\prime}\in\stackrel{\leftarrow}{S}\} } </math>,其中<math>\mathcal{S} </math>为因果态的集合,<math>\stackrel{\leftarrow}{s} </math>为历史序列的随机变量。
 
[[文件:因果态的定义.jpg|居中|无框|400x400px|替代=]]
 
[[文件:因果态的定义.jpg|居中|无框|400x400px|替代=]]
 
如上图所示,左侧的数字代表<math>t</math>时刻的状态序列,右侧的箭头形状代表对未来状态预测的分布,可以观察到<math>t_9</math>和<math>t_{13}</math>时刻的箭头形状完全相同,说明它们对未来状态预测的分布相同,则处于相同的因果态;同样的道理,在<math>t_{11}</math>时刻,它的箭头形状与<math>t_9</math>和<math>t_{13}</math>时刻不同,则处于不同的因果态。
 
如上图所示,左侧的数字代表<math>t</math>时刻的状态序列,右侧的箭头形状代表对未来状态预测的分布,可以观察到<math>t_9</math>和<math>t_{13}</math>时刻的箭头形状完全相同,说明它们对未来状态预测的分布相同,则处于相同的因果态;同样的道理,在<math>t_{11}</math>时刻,它的箭头形状与<math>t_9</math>和<math>t_{13}</math>时刻不同,则处于不同的因果态。
297

个编辑