打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
复杂网络中的因果涌现
(查看源代码)
2024年12月15日 (日) 15:00的版本
添加2字节
、
2024年12月15日 (日) 15:00
→检验动力学的一致性
第169行:
第169行:
前面介绍了如何对一个复杂网络进行粗粒化的方式,有了新的粗粒化后的网络,我们便可以在粗粒化的网络上放置随机游走子,从而得到粗粒化后的概率转移矩阵。
前面介绍了如何对一个复杂网络进行粗粒化的方式,有了新的粗粒化后的网络,我们便可以在粗粒化的网络上放置随机游走子,从而得到粗粒化后的概率转移矩阵。
−
然而,好的粗粒化方案是能够尽可能保证原始的网络(或转移矩阵)和粗粒化后的网络(或转移矩阵)尽可能地相似的,那么如何保证这种相似性呢?Klein等人在论文<ref name="
1
"/>提出了一种动力学一致性检验方法,它的基本思想是通过比较粗粒化方案后未曾被分组归并的节点上的概率分布是否和原始的网络一致。
+
然而,好的粗粒化方案是能够尽可能保证原始的网络(或转移矩阵)和粗粒化后的网络(或转移矩阵)尽可能地相似的,那么如何保证这种相似性呢?Klein等人在论文<ref name="
:0
" />提出了一种动力学一致性检验方法,它的基本思想是通过比较粗粒化方案后未曾被分组归并的节点上的概率分布是否和原始的网络一致。
具体地,[[动力学的一致性检验]]可以进一步验证网络粗粒化方法的有效性。它的基本思想是,比较随机游走子在给定相同的初始分布下,宏微观网络的期望分布的[[KL散度]]。
具体地,[[动力学的一致性检验]]可以进一步验证网络粗粒化方法的有效性。它的基本思想是,比较随机游走子在给定相同的初始分布下,宏微观网络的期望分布的[[KL散度]]。
Jake
905
个编辑