更改

第152行: 第152行:  
'''输入''':包含[math]N[/math]个节点的原始网络[math]G[/math],其对应邻接矩阵为:<math>A</math>,粗粒化后的网络所包含的节点数:<math>K</math>;'''输出''':宏观网络[math]G'[/math],对应的邻接矩阵为:<math>B</math>,以及对应的从[math]A[/math]到[math]B[/math]的粗粒化矩阵:<math>M</math>
 
'''输入''':包含[math]N[/math]个节点的原始网络[math]G[/math],其对应邻接矩阵为:<math>A</math>,粗粒化后的网络所包含的节点数:<math>K</math>;'''输出''':宏观网络[math]G'[/math],对应的邻接矩阵为:<math>B</math>,以及对应的从[math]A[/math]到[math]B[/math]的粗粒化矩阵:<math>M</math>
   −
# 针对一个含有<math>N</math>个节点的网络<math>A</math>,随机初始化一个分组矩阵<math>M\in \mathbb{R}^{N×K}</math>,<math>K</math>表示分组的大小,其中矩阵里面的每个元素<math>m_{iμ}=Pr⁡(v_i\in v_{\mu})</math>,表示微节点<math>v_i</math>属于宏观节点<math>v_{\mu}</math>的概率
+
# 针对一个含有<math>N</math>个节点的网络<math>A</math>,随机初始化一个分组矩阵<math>M\in \mathbb{R}^{N×K}</math>,<math>K</math>表示分组的大小,其中矩阵里面的每个元素<math>m_{iμ}=Pr⁡(v_i\in v_{\mu})</math>,表示微观节点<math>v_i</math>属于宏观节点<math>v_{\mu}</math>的概率
 
# 根据微观网络和分组矩阵构建宏观网络<math>B</math>,具体计算方法分为两个步骤:1)<math>M^TAM</math>;2)归一化前一步骤得到的矩阵
 
# 根据微观网络和分组矩阵构建宏观网络<math>B</math>,具体计算方法分为两个步骤:1)<math>M^TAM</math>;2)归一化前一步骤得到的矩阵
 
# 进行优化,优化目标是最大化宏观网络的有效信息EI,使用带动量的[[梯度下降]]方法优化<math>M</math>。
 
# 进行优化,优化目标是最大化宏观网络的有效信息EI,使用带动量的[[梯度下降]]方法优化<math>M</math>。
905

个编辑