A hypergraph ''H'' may be represented by a [[bipartite graph]] ''BG'' as follows: the sets ''X'' and ''E'' are the partitions of ''BG'', and (''x<sub>1</sub>'', ''e<sub>1</sub>'') are connected with an edge if and only if vertex ''x<sub>1</sub>'' is contained in edge ''e<sub>1</sub>'' in ''H''. Conversely, any bipartite graph with fixed parts and no unconnected nodes in the second part represents some hypergraph in the manner described above. This bipartite graph is also called [[incidence graph]]. | A hypergraph ''H'' may be represented by a [[bipartite graph]] ''BG'' as follows: the sets ''X'' and ''E'' are the partitions of ''BG'', and (''x<sub>1</sub>'', ''e<sub>1</sub>'') are connected with an edge if and only if vertex ''x<sub>1</sub>'' is contained in edge ''e<sub>1</sub>'' in ''H''. Conversely, any bipartite graph with fixed parts and no unconnected nodes in the second part represents some hypergraph in the manner described above. This bipartite graph is also called [[incidence graph]]. |