更改

删除23字节 、 2020年4月22日 (三) 17:46
无编辑摘要
第81行: 第81行:  
* 𝑘-均匀超图:每条超边都正好包含 k 个顶点的超图。
 
* 𝑘-均匀超图:每条超边都正好包含 k 个顶点的超图。
 
* 𝑑-正则超图:每个顶点的度数都是 𝑑 的超图
 
* 𝑑-正则超图:每个顶点的度数都是 𝑑 的超图
* 非循环超图:不包含任何循环的超图。
+
* 无环超图:不包含任何圈的超图。
    
Because hypergraph links can have any cardinality, there are several notions of the concept of a subgraph, called ''subhypergraphs'', ''partial hypergraphs'' and ''section hypergraphs''.
 
Because hypergraph links can have any cardinality, there are several notions of the concept of a subgraph, called ''subhypergraphs'', ''partial hypergraphs'' and ''section hypergraphs''.
第570行: 第570行:  
* Claude Berge, "Hypergraphs: Combinatorics of finite sets". North-Holland, 1989.
 
* Claude Berge, "Hypergraphs: Combinatorics of finite sets". North-Holland, 1989.
 
* Claude Berge, Dijen Ray-Chaudhuri, "Hypergraph Seminar, Ohio State University 1972", ''Lecture Notes in Mathematics'' '''411''' Springer-Verlag
 
* Claude Berge, Dijen Ray-Chaudhuri, "Hypergraph Seminar, Ohio State University 1972", ''Lecture Notes in Mathematics'' '''411''' Springer-Verlag
* Hazewinkel, Michiel, ed. (2001) [1994], "Hypergraph", [https://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics Encyclopedia of Mathematics], Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
+
* Hazewinkel, Michiel, ed. (2001) [1994], "Hypergraph", [https://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics Encyclopedia of Mathematics], Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN  
 
* Alain Bretto, "Hypergraph Theory: an Introduction", Springer, 2013.
 
* Alain Bretto, "Hypergraph Theory: an Introduction", Springer, 2013.
 
* Vitaly I. Voloshin. "Coloring Mixed Hypergraphs: Theory, Algorithms and Applications".  Fields Institute Monographs, American Mathematical Society, 2002.
 
* Vitaly I. Voloshin. "Coloring Mixed Hypergraphs: Theory, Algorithms and Applications".  Fields Institute Monographs, American Mathematical Society, 2002.
27

个编辑