第98行: |
第98行: |
| where <math>I_v</math> and <math>I_e</math> are the [[index set]]s of the vertices and edges respectively. | | where <math>I_v</math> and <math>I_e</math> are the [[index set]]s of the vertices and edges respectively. |
| | | |
− | 让 𝐻=(𝑋,𝐸) 是一个超图,包含顶点集: | + | |
− | 𝑋={𝑥𝑖|𝑖∈𝐼𝑣},
| + | 让 <math>H=(X,E)</math> 是一个超图,包含顶点集: |
− | 和边集
| + | |
− | 𝐸={𝑒𝑖|𝑖∈𝐼𝑒∧𝑒𝑖⊆𝑋∧𝑒𝑖≠∅𝐸}
| + | :<math>X = \lbrace x_i | i \in I_v \rbrace,</math> |
− | 其中 𝐼𝑣 和 𝐼𝑒 分别是顶点和边集的索引集。 | + | |
| + | 和 ''边集'': |
| + | |
| + | :<math>E = \lbrace e_i | i\in I_e \land e_i \subseteq X \land e_i \neq \emptyset \rbrace,</math> |
| + | |
| + | 其中 <math>I_v</math> 和 <math>I_e</math> 分别是顶点和边集的[[索引集]] |
| | | |
| A ''subhypergraph'' is a hypergraph with some vertices removed. Formally, the subhypergraph <math>H_A</math> induced by <math>A \subseteq X </math> is defined as | | A ''subhypergraph'' is a hypergraph with some vertices removed. Formally, the subhypergraph <math>H_A</math> induced by <math>A \subseteq X </math> is defined as |
第109行: |
第114行: |
| e \cap A \neq \emptyset \rbrace \right).</math> | | e \cap A \neq \emptyset \rbrace \right).</math> |
| | | |
− | 子超图是去掉某些顶点的超图。在形式上,若 𝐴⊆𝑋 是顶点子集,则子超图 𝐻𝐴 被定义为:
| + | ''子超图'' 是去掉某些顶点的超图。在形式上,若 <math>A \subseteq X </math> 是顶点子集,则子超图 <math>H_A</math> 被定义为: |
− | 𝐻𝐴=(𝐴,{𝑒𝐴∩∩|𝑒𝐴∈𝐸∧𝑒∩𝐴≠∅)
| + | |
| + | :<math>H_A=\left(A, \lbrace e \cap A | e \in E \land |
| + | e \cap A \neq \emptyset \rbrace \right).</math> |
| | | |
| An ''extension'' of a ''subhypergraph'' is a hypergraph where each | | An ''extension'' of a ''subhypergraph'' is a hypergraph where each |
| hyperedge of <math>H</math> which is partially contained in the subhypergraph <math>H_A</math> and is fully contained in the extension <math>Ex(H_A)</math>. | | hyperedge of <math>H</math> which is partially contained in the subhypergraph <math>H_A</math> and is fully contained in the extension <math>Ex(H_A)</math>. |
| Formally | | Formally |
− | 一个子超图的扩展是一个超图,其中每个属于 H 的超边都部分包含在子超图的 𝐻𝐴,并且完全包含在扩展的𝐸𝑥(𝐻𝐴) 中。即在形式上:
| + | 一个''子超图''的''扩展''是一个超图,其中每个属于 <math>H</math> 的超边都部分包含在子超图的 <math>H_A</math>,并且完全包含在扩展的 <math>Ex(H_A)</math> 中。即在形式上: |
| :<math>Ex(H_A) = (A \cup A', E' )</math> with <math>A' = \bigcup_{e \in E} e \setminus A</math> and <math>E' = \lbrace e \in E | e \subseteq (A \cup A') \rbrace</math>. | | :<math>Ex(H_A) = (A \cup A', E' )</math> with <math>A' = \bigcup_{e \in E} e \setminus A</math> and <math>E' = \lbrace e \in E | e \subseteq (A \cup A') \rbrace</math>. |
| + | |
| | | |
| The ''partial hypergraph'' is a hypergraph with some edges removed. Given a subset <math>J \subset I_e</math> of the edge index set, the partial hypergraph generated by <math>J</math> is the hypergraph | | The ''partial hypergraph'' is a hypergraph with some edges removed. Given a subset <math>J \subset I_e</math> of the edge index set, the partial hypergraph generated by <math>J</math> is the hypergraph |
− | 部分超图是去掉一些边的超图。给定一个边索引集的子集 𝐽⊂𝐼𝑒 ,由 𝐽 生成的部分超图就是
| + | ''部分超图''是去掉一些边的超图。给定一个边索引集的子集 <math>J \subset I_e</math> ,由 <math>J</math> 生成的部分超图就是 |
| + | |
| :<math>\left(X, \lbrace e_i | i\in J \rbrace \right).</math> | | :<math>\left(X, \lbrace e_i | i\in J \rbrace \right).</math> |
| | | |
| Given a subset <math>A\subseteq X</math>, the ''section hypergraph'' is the partial hypergraph | | Given a subset <math>A\subseteq X</math>, the ''section hypergraph'' is the partial hypergraph |
− | 而给定一个子集 𝐴⊆𝑋,则分段超图是部分超图 | + | 而给定一个子集 <math>A\subseteq X</math>,则''分段超图''是部分超图 |
| :<math>H \times A = \left(A, \lbrace e_i | | | :<math>H \times A = \left(A, \lbrace e_i | |
| i\in I_e \land e_i \subseteq A \rbrace \right).</math> | | i\in I_e \land e_i \subseteq A \rbrace \right).</math> |
| | | |
| The '''dual''' <math>H^*</math> of <math>H</math> is a hypergraph whose vertices and edges are interchanged, so that the vertices are given by <math>\lbrace e_i \rbrace</math> and whose edges are given by <math>\lbrace X_m \rbrace</math> where | | The '''dual''' <math>H^*</math> of <math>H</math> is a hypergraph whose vertices and edges are interchanged, so that the vertices are given by <math>\lbrace e_i \rbrace</math> and whose edges are given by <math>\lbrace X_m \rbrace</math> where |
− | 𝐻 的重记号 𝐻∗ 则是一个顶点和边互换的超图,因此顶点由 {𝑒𝑖 } 给出,边由 {𝑋𝑚} 给出,其中
| + | <math>H</math> 的重记号 <math>H^*</math> 则是一个顶点和边互换的超图,因此顶点由 <math>\lbrace e_i \rbrace</math> 给出,边由 <math>\lbrace X_m \rbrace</math> 给出,其中 |
| :<math>X_m = \lbrace e_i | x_m \in e_i \rbrace. </math> | | :<math>X_m = \lbrace e_i | x_m \in e_i \rbrace. </math> |
| | | |