更改

添加1,298字节 、 2020年3月15日 (日) 20:26
第53行: 第53行:     
Bonacich的度量系列不会转换邻接矩阵。 Alpha中心性用其解析物替换了邻接矩阵。 子图的中心性用其迹替换邻接矩阵。 令人吃惊的结论是,不管邻接矩阵的初始转换如何,所有这些方法都具有共同的限制行为。 当接近零时,指标数收敛到度中心。 随着接近其最大值,指标数收敛到特征值中心。
 
Bonacich的度量系列不会转换邻接矩阵。 Alpha中心性用其解析物替换了邻接矩阵。 子图的中心性用其迹替换邻接矩阵。 令人吃惊的结论是,不管邻接矩阵的初始转换如何,所有这些方法都具有共同的限制行为。 当接近零时,指标数收敛到度中心。 随着接近其最大值,指标数收敛到特征值中心。
 +
 +
===博弈理论的中心性===
 +
 +
大多数上述标准度量的共同特征是,它们仅通过关注节点自身扮演的角色来评估节点的重要性。 但是,在许多应用中,这种方法是不够的,因为如果成组地考虑节点的功能,可能会产生协同作用。
 +
 +
例如,考虑阻止流感的问题。从上面的网络图像来看,我们应该接种哪些节点?基于先前描述的措施,我们希望识别在疾病传播中最重要的节点。仅基于中心性的方法(专注于节点的各个功能)可能不是一个好方法。红方框中的节点无法单独阻止疾病传播,但是将它们作为一个整体来看,我们清楚地看到,如果节点<math>v_ {1}</math>, <math>v_4</math>和<math> v_ {5}</math>。博弈论中心试图使用博弈论中的工具来指导所描述的问题和几率。文献<ref>Michalak, Aadithya, Szczepański, Ravindran, & Jennings https://arxiv.org/pdf/1402.0567.pdf</ref>中提出的方法使用Shapley值。由于Shapley值计算的时间复杂性很强,因此在该领域中的大多数努力都被驱使用来实施新的算法和方法,这些算法和方法依赖于网络的特殊拓扑或问题的特殊特征。这样的方法可以导致将时间复杂度从指数减小到多项式。
    
==重要极限(局限)==
 
==重要极限(局限)==