更改

添加3,708字节 、 2020年4月22日 (三) 19:53
第474行: 第474行:  
  }}.</ref>
 
  }}.</ref>
   −
其中一种超图的可视化表示法,类似于标准的图的画法:用平面内的曲线来描绘图边,将超图的顶点画成点状、圆盘或盒子,超边则被描绘成以顶点为叶子的树[16][17]。如果顶点表示为点,超边也可以被描绘成连接点集的平滑曲线,或显示为封闭点集的简单闭合曲线[18][19][20]
+
其中一种超图的可视化表示法,类似于标准的图的画法:用平面内的曲线来描绘图边,将超图的顶点画成点状、圆盘或盒子,超边则被描绘成以顶点为叶子的树。<ref>{{citation
 +
| last = Sander | first = G.
 +
| contribution = Layout of directed hypergraphs with orthogonal hyperedges
 +
| pages = 381–386
 +
| publisher = Springer-Verlag
 +
| series = [[Lecture Notes in Computer Science]]
 +
| title = Proc. 11th International Symposium on Graph Drawing (GD 2003)
 +
| contribution-url = http://gdea.informatik.uni-koeln.de/585/1/hypergraph.ps
 +
| volume = 2912
 +
| year = 2003| title-link = International Symposium on Graph Drawing
 +
}}.</ref><ref>{{citation
 +
| last1 = Eschbach | first1 = Thomas
 +
| last2 = Günther | first2 = Wolfgang
 +
| last3 = Becker | first3 = Bernd
 +
| issue = 2
 +
| journal = [[Journal of Graph Algorithms and Applications]]
 +
| pages = 141–157
 +
| title = Orthogonal hypergraph drawing for improved visibility
 +
| url = http://jgaa.info/accepted/2006/EschbachGuentherBecker2006.10.2.pdf
 +
| volume = 10
 +
| year = 2006 | doi=10.7155/jgaa.00122}}.</ref> 。如果顶点表示为点,超边也可以被描绘成连接点集的平滑曲线,或显示为封闭点集的简单闭合曲线<ref>{{citation
 +
| last = Mäkinen | first = Erkki
 +
| doi = 10.1080/00207169008803875
 +
| issue = 3
 +
| journal = International Journal of Computer Mathematics
 +
| pages = 177–185
 +
| title = How to draw a hypergraph
 +
| volume = 34
 +
| year = 1990}}.</ref><ref>{{citation
 +
| last1 = Bertault | first1 = François
 +
| last2 = Eades | first2 = Peter | author2-link = Peter Eades
 +
| contribution = Drawing hypergraphs in the subset standard
 +
| doi = 10.1007/3-540-44541-2_15
 +
| pages = 45–76
 +
| publisher = Springer-Verlag
 +
| series = Lecture Notes in Computer Science
 +
| title = Proc. 8th International Symposium on Graph Drawing (GD 2000)
 +
| volume = 1984
 +
| year = 2001| title-link = International Symposium on Graph Drawing
 +
| isbn =
 +
| doi-access = free
 +
}}.</ref><ref>{{citation
 +
| last1 = Naheed Anjum | first1 = Arafat
 +
| last2 = Bressan | first2 = Stéphane
 +
| contribution = Hypergraph Drawing by Force-Directed Placement
 +
| doi = 10.1007/_31
 +
| pages = 387–394
 +
| publisher = Springer International Publishing
 +
| series = Lecture Notes in Computer Science
 +
| title = 28th International Conference on Database and Expert Systems Applications (DEXA 2017)
 +
| volume = 10439
 +
| year = 2017| isbn =
 +
}}.</ref>
    
[[File:Venn's four ellipse construction.svg|thumb|An order-4 Venn diagram, which can be interpreted as a subdivision drawing of a hypergraph with 15 vertices (the 15 colored regions) and 4 hyperedges (the 4 ellipses).(一个4阶维恩图,可以被解释为一个15个顶点(15个有色区域)和4个超边(4个椭圆)的超图的细分图)]]
 
[[File:Venn's four ellipse construction.svg|thumb|An order-4 Venn diagram, which can be interpreted as a subdivision drawing of a hypergraph with 15 vertices (the 15 colored regions) and 4 hyperedges (the 4 ellipses).(一个4阶维恩图,可以被解释为一个15个顶点(15个有色区域)和4个超边(4个椭圆)的超图的细分图)]]
第519行: 第571行:  
  }}.</ref>
 
  }}.</ref>
   −
超图可视化的另一种样式,是绘制超图的细分模型[21],平面被细分为区域,每个区域代表超图的一个顶点。超图的超边用这些区域的相邻子集来表示,这些子集可以通过着色、或在它们周围画轮廓来表示,或者兼而有之。
+
超图可视化的另一种样式,是绘制超图的细分模型<ref>{{citation
 +
| last1 = Kaufmann | first1 = Michael
 +
| last2 = van Kreveld | first2 = Marc
 +
| last3 = Speckmann | first3 = Bettina | author3-link = Bettina Speckmann
 +
| contribution = Subdivision drawings of hypergraphs
 +
| doi = 10.1007/_39
 +
| pages = 396–407
 +
| publisher = Springer-Verlag
 +
| series = Lecture Notes in Computer Science
 +
| title = Proc. 16th International Symposium on Graph Drawing (GD 2008)
 +
| volume = 5417
 +
| year = 2009| title-link = International Symposium on Graph Drawing
 +
| isbn =
 +
| doi-access = free
 +
}}.</ref> ,平面被细分为区域,每个区域代表超图的一个顶点。超图的超边用这些区域的相邻子集来表示,这些子集可以通过着色、或在它们周围画轮廓来表示,或者兼而有之。<ref>{{citation
 +
| last1 = Johnson | first1 = David S. | author1-link = David S. Johnson
 +
| last2 = Pollak | first2 = H. O.
 +
| doi = 10.1002/jgt.3190110306
 +
| issue = 3
 +
| journal = Journal of Graph Theory
 +
| pages = 309–325
 +
| title = Hypergraph planarity and the complexity of drawing Venn diagrams
 +
| volume = 11
 +
| year = 2006}}.</ref> but the existence of a drawing of this type may be tested efficiently when the adjacency pattern of the regions is constrained to be a path, cycle, or tree.<ref>{{citation
 +
| last1 = Buchin | first1 = Kevin
 +
| last2 = van Kreveld | first2 = Marc
 +
| last3 = Meijer | first3 = Henk
 +
| last4 = Speckmann | first4 = Bettina
 +
| last5 = Verbeek | first5 = Kevin
 +
| contribution = On planar supports for hypergraphs
 +
| doi = 10.1007/_33
 +
| pages = 345–356
 +
| publisher = Springer-Verlag
 +
| series = Lecture Notes in Computer Science
 +
| title = Proc. 17th International Symposium on Graph Drawing (GD 2009)
 +
| volume = 5849
 +
| year = 2010| title-link = International Symposium on Graph Drawing
 +
| isbn =
 +
| doi-access = free
 +
}}.</ref>
    
An alternative representation of the hypergraph called PAOH<ref name="paoh" /> is shown in the figure on top of this article. Edges are vertical lines connecting vertices. Vertices are aligned on the left. The legend on the right shows the names of the edges. It has been designed for dynamic hypergraphs but can be used for simple hypergraphs as well.
 
An alternative representation of the hypergraph called PAOH<ref name="paoh" /> is shown in the figure on top of this article. Edges are vertical lines connecting vertices. Vertices are aligned on the left. The legend on the right shows the names of the edges. It has been designed for dynamic hypergraphs but can be used for simple hypergraphs as well.
377

个编辑