更改

添加31字节 、 2020年4月27日 (一) 16:59
第14行: 第14行:     
==两种模型的比较==
 
==两种模型的比较==
''G''(''n'', ''p'')中可能的连边数为<math>\binom{n}{2}p</math>,由[https://en.wikipedia.org/wiki/Law_of_large_numbers 大数定律],''G''(''n'', ''p'')中的每个图几乎必有大概这么多连边(假设可能的连边数趋于无穷)。因此,粗略的结果是如果pn<sup>2</sup> → ∞,那么当<math>M=\tbinom{n}{2} p</math>随着n的增加而增加时,''G''(''n'', ''p'')将与''G''(''n'', ''M'')有相似的表现。许多图的性质都是这样。如果P是满足对子图序[https://en.wikipedia.org/wiki/Monotonic_function 单调]的任意一种图的性质(即若A是B的子图且A满足P,则B也满足P),那么命题“''G''(''n'', ''p'')中几乎所有图满足P”等价于“<math> G(n, \tbinom{n}{2} p) </math>中几乎所有图满足P”(其中pn<sup>2</sup> → ∞)。例如,当P是[https://en.wikipedia.org/wiki/Connectedness 连通性]时,或P是包含[https://en.wikipedia.org/wiki/Hamiltonian_path 哈密顿圈]的性质时,上述关系就成立。然而,它对非单调性质(如具有偶数连边的性质)未必成立。
+
<math>G(n,p)</math>中可能的连边数为<math>\binom{n}{2}p</math>,由[https://en.wikipedia.org/wiki/Law_of_large_numbers 大数定律],<math>G(n,p)</math>中的每个图几乎必有大概这么多连边(假设可能的连边数趋于无穷)。因此,粗略的结果是如果pn<sup>2</sup> → ∞,那么当<math>M=\tbinom{n}{2} p</math>随着n的增加而增加时,<math>G(n,p)</math>将与<math>G(n,M)</math>有相似的表现。许多图的性质都是这样。如果P是满足对子图序[https://en.wikipedia.org/wiki/Monotonic_function 单调]的任意一种图的性质(即若A是B的子图且A满足P,则B也满足P),那么命题“<math>G(n,p)</math>中几乎所有图满足P”等价于“<math> G(n, \tbinom{n}{2} p) </math>中几乎所有图满足<math>P</math>”(其中pn<sup>2</sup> → ∞)。
如今在实际应用中,''G''(''n'', ''p'')模型更加常用,部分原因是通过连边的独立性进行分析较为容易。
+
 
 +
 
 +
例如,当<math>P</math>是[https://en.wikipedia.org/wiki/Connectedness 连通性]时,或P是包含[https://en.wikipedia.org/wiki/Hamiltonian_path 哈密顿圈]的性质时,上述关系就成立。然而,它对非单调性质(如具有偶数连边的性质)未必成立。
 +
 
 +
 
 +
如今在实际应用中,<math>G(n,p)</math>模型更加常用,部分原因是通过连边的独立性进行分析较为容易。
 
[[File:1280px-Erdos generated network-p0.01.jpg|200px|thumb|right|二项分布ER模型生成的一个图(p=0.01)]]
 
[[File:1280px-Erdos generated network-p0.01.jpg|200px|thumb|right|二项分布ER模型生成的一个图(p=0.01)]]
  
763

个编辑