更改

第14行: 第14行:     
== 定义 ==
 
== 定义 ==
* 理论定义:
+
==== 理论定义 ====
 
在[[混沌理论]] Chaos theory中,蝴蝶效应 Butterfly effect 是对初始条件的一种敏感依赖——在初始条件下,[[确定性非线性系统]]的一种状态的微小变化会导致在后续状态巨大差异。
 
在[[混沌理论]] Chaos theory中,蝴蝶效应 Butterfly effect 是对初始条件的一种敏感依赖——在初始条件下,[[确定性非线性系统]]的一种状态的微小变化会导致在后续状态巨大差异。
   第21行: 第21行:       −
* 理论依据:
+
====理论依据====
 
[[递归]](系统向其初始状态的近似返回)和系统状态对初始条件的敏感依赖性是造成混沌运动的两个主要因素。它们带来的实际影响就是使复杂系统(如天气系统)难以进行超过特定时间范围的预测(天气预测的话大约1周),因为无法完全准确地测量起始大气条件。当点随着时间以指数速度任意靠近、融合、分开时,动力学系统就会显示出对初始条件的这种敏感依赖性。这个定义不是基于拓扑学的,它本质上是一种测量。
 
[[递归]](系统向其初始状态的近似返回)和系统状态对初始条件的敏感依赖性是造成混沌运动的两个主要因素。它们带来的实际影响就是使复杂系统(如天气系统)难以进行超过特定时间范围的预测(天气预测的话大约1周),因为无法完全准确地测量起始大气条件。当点随着时间以指数速度任意靠近、融合、分开时,动力学系统就会显示出对初始条件的这种敏感依赖性。这个定义不是基于拓扑学的,它本质上是一种测量。
      −
* 数学定义:
+
==== 数学定义====
 
定义:设M是映射<math> f^{t}</math>的状态空间:如果对于任何<math> x∈M</math>和<math> δ> 0</math>,都存在<math> y∈M</math>和距离<math>d(. , .)</math>使得 <math> 0<d(x,y)<δ</math> 且对于某个正数 <math>a</math> 有 <math>d(f^{t}(x),f^{t}(y))>e^{at}d(x,y) </math>,则映射 <math> f^{t}</math> 表现出对初始条件的敏感依赖性。该定义不要求邻域中的所有点都与基点x分开,而是需要一个正的李雅普诺夫指数 Lyapunov exponent。
 
定义:设M是映射<math> f^{t}</math>的状态空间:如果对于任何<math> x∈M</math>和<math> δ> 0</math>,都存在<math> y∈M</math>和距离<math>d(. , .)</math>使得 <math> 0<d(x,y)<δ</math> 且对于某个正数 <math>a</math> 有 <math>d(f^{t}(x),f^{t}(y))>e^{at}d(x,y) </math>,则映射 <math> f^{t}</math> 表现出对初始条件的敏感依赖性。该定义不要求邻域中的所有点都与基点x分开,而是需要一个正的李雅普诺夫指数 Lyapunov exponent。
   第39行: 第39行:     
其中初始状态<math>θ=\frac{1}{π} sin^{-1}(x_{0}^{\frac{1}{2}}) </math>,对于有理数 <math>θ</math> ,在有限次数的迭代之后,<math>x_{n}</math> 映射为周期序列。但是几乎所有的  <math>θ</math> 都是无理数的,那么对于无理数的 <math>θ</math> ,<math>x_{n}</math> 永远不会自我重复——因为它是非周期性的。该解决方案方程式清楚地说明了混沌的两个关键特征–拉伸和折叠 stretching and folding :因子 ,<math>2^{n}</math> 显示拉伸的指数增长,这导致对初始条件的敏感依赖(即蝴蝶效应),而正弦平方函数将 ,<math>x_{n}</math> 折叠在[0,1]范围内。
 
其中初始状态<math>θ=\frac{1}{π} sin^{-1}(x_{0}^{\frac{1}{2}}) </math>,对于有理数 <math>θ</math> ,在有限次数的迭代之后,<math>x_{n}</math> 映射为周期序列。但是几乎所有的  <math>θ</math> 都是无理数的,那么对于无理数的 <math>θ</math> ,<math>x_{n}</math> 永远不会自我重复——因为它是非周期性的。该解决方案方程式清楚地说明了混沌的两个关键特征–拉伸和折叠 stretching and folding :因子 ,<math>2^{n}</math> 显示拉伸的指数增长,这导致对初始条件的敏感依赖(即蝴蝶效应),而正弦平方函数将 ,<math>x_{n}</math> 折叠在[0,1]范围内。
      
== 应用 ==
 
== 应用 ==
7,129

个编辑