更改

第18行: 第18行:     
蝴蝶效应说明了任何事物发展均存在定数与变数,事物在发展过程中其发展轨迹有规律可循,同时也存在不可测的“变数”,往往还会适得其反,一个微小的变化能影响事物的发展,证实了事物的发展具有复杂性。
 
蝴蝶效应说明了任何事物发展均存在定数与变数,事物在发展过程中其发展轨迹有规律可循,同时也存在不可测的“变数”,往往还会适得其反,一个微小的变化能影响事物的发展,证实了事物的发展具有复杂性。
 +
    
====理论依据====
 
====理论依据====
 
[[递归]](系统向其初始状态的近似返回)和系统状态对初始条件的敏感依赖性是造成混沌运动的两个主要因素。它们带来的实际影响就是使[[复杂系统]](如天气系统)难以进行超过特定时间范围的预测(天气预测的话大约1周),因为无法完全准确地测量起始大气条件。当点随着时间以指数速度任意靠近、融合、分开时,动力学系统就会显示出对初始条件的这种敏感依赖性。这个定义不是基于拓扑学的,它本质上是一种测量。
 
[[递归]](系统向其初始状态的近似返回)和系统状态对初始条件的敏感依赖性是造成混沌运动的两个主要因素。它们带来的实际影响就是使[[复杂系统]](如天气系统)难以进行超过特定时间范围的预测(天气预测的话大约1周),因为无法完全准确地测量起始大气条件。当点随着时间以指数速度任意靠近、融合、分开时,动力学系统就会显示出对初始条件的这种敏感依赖性。这个定义不是基于拓扑学的,它本质上是一种测量。
 +
    
==== 数学定义====
 
==== 数学定义====
第36行: 第38行:     
其中初始状态<math>θ=\frac{1}{π} sin^{-1}(x_{0}^{\frac{1}{2}}) </math>,对于有理数 <math>θ</math> ,在有限次数的迭代之后,<math>x_{n}</math> 映射为周期序列。但是几乎所有的  <math>θ</math> 都是无理数的,那么对于无理数的 <math>θ</math> ,<math>x_{n}</math> 永远不会自我重复——因为它是非周期性的。该解决方案方程式清楚地说明了混沌的两个关键特征–拉伸 stretching和折叠 folding :因子 ,<math>2^{n}</math> 显示拉伸的指数增长,这导致对初始条件的敏感依赖(即蝴蝶效应),而正弦平方函数将 ,<math>x_{n}</math> 折叠在[0,1]范围内。
 
其中初始状态<math>θ=\frac{1}{π} sin^{-1}(x_{0}^{\frac{1}{2}}) </math>,对于有理数 <math>θ</math> ,在有限次数的迭代之后,<math>x_{n}</math> 映射为周期序列。但是几乎所有的  <math>θ</math> 都是无理数的,那么对于无理数的 <math>θ</math> ,<math>x_{n}</math> 永远不会自我重复——因为它是非周期性的。该解决方案方程式清楚地说明了混沌的两个关键特征–拉伸 stretching和折叠 folding :因子 ,<math>2^{n}</math> 显示拉伸的指数增长,这导致对初始条件的敏感依赖(即蝴蝶效应),而正弦平方函数将 ,<math>x_{n}</math> 折叠在[0,1]范围内。
 +
 +
</br>
    
== 应用 ==
 
== 应用 ==
7,129

个编辑