有些混沌系统可对于其未来状态的可能性作准确的描述。若一个可能有混沌特性的动力系统存在吸引子,则存在一概率量测描述系统长期在吸引子各部分所花时间的比例。以<math>μ</math>=4的Logistic映射为例,初始状态在区间(0,1)中,而吸引子也在区间(0,1)中,其概率量测对应参数<math> a=0.5,b=0.5</math>的Β分布<ref>{{cite journal |last=Jakobson |first=M. |title=Absolutely continuous invariant measures for one-parameter families of one-dimensional maps |journal=Communications in Mathematical Physics |volume=81 |issue=1 |year=1981 |pages=39–88 |doi=10.1007/BF01941800 |bibcode=1981CMaPh..81...39J }}</ref>,其不变测度为 | 有些混沌系统可对于其未来状态的可能性作准确的描述。若一个可能有混沌特性的动力系统存在吸引子,则存在一概率量测描述系统长期在吸引子各部分所花时间的比例。以<math>μ</math>=4的Logistic映射为例,初始状态在区间(0,1)中,而吸引子也在区间(0,1)中,其概率量测对应参数<math> a=0.5,b=0.5</math>的Β分布<ref>{{cite journal |last=Jakobson |first=M. |title=Absolutely continuous invariant measures for one-parameter families of one-dimensional maps |journal=Communications in Mathematical Physics |volume=81 |issue=1 |year=1981 |pages=39–88 |doi=10.1007/BF01941800 |bibcode=1981CMaPh..81...39J }}</ref>,其不变测度为 |