*对于<math>\beta \rightarrow 1</math>的极限情况,集聚系数与经典随机图同阶,<math>C=\frac{K}{N-1}</math>,与系统规模成反比;区间内的集聚系数则十分接近于正则环点阵的系数值,只有在<math>\beta</math>相对较大时才会下降,这就导致了在一定区间范围内平均节点间距离下降迅速,而集聚系数保持相对恒定的情形,也就解释了“小世界”现象。 | *对于<math>\beta \rightarrow 1</math>的极限情况,集聚系数与经典随机图同阶,<math>C=\frac{K}{N-1}</math>,与系统规模成反比;区间内的集聚系数则十分接近于正则环点阵的系数值,只有在<math>\beta</math>相对较大时才会下降,这就导致了在一定区间范围内平均节点间距离下降迅速,而集聚系数保持相对恒定的情形,也就解释了“小世界”现象。 |