更改

添加755字节 、 2020年5月6日 (三) 18:46
第23行: 第23行:  
Let {{math|G {{=}} (V, E)}} and {{math|G&prime; {{=}} (V&prime;, E&prime;)}} be two graphs. Graph {{math|G&prime;}} is a ''sub-graph'' of graph {{math|G}} (written as {{math|G&prime; ⊆ G}}) if {{math|V&prime; ⊆ V}} and {{math|E&prime; ⊆ E ∩ (V&prime; &times; V&prime;)}}. If {{math|G&prime; ⊆ G}} and {{math|G&prime;}} contains all of the edges  {{math|&lang;u, v&rang; ∈ E}} with {{math|u, v ∈ V&prime;}}, then {{math|G&prime;}} is an ''induced sub-graph'' of {{math|G}}. We call {{math|G&prime;}} and {{math|G}} isomorphic (written as {{math|G&prime; ↔ G}}), if there exists a bijection (one-to-one) {{math|f:V&prime; → V}} with  {{math|&lang;u, v&rang; ∈ E&prime; ⇔ &lang;f(u), f(v)&rang; ∈ E}} for all {{math|u, v ∈ V&prime;}}. The mapping {{math|f}} is called an isomorphism between {{math|G}} and {{math|G&prime;}}.<ref name="die1">{{cite journal |author=Diestel R |title=Graph Theory (Graduate Texts in Mathematics) |volume=173 |year=2005|publisher=New York: Springer-Verlag Heidelberg}}</ref>
 
Let {{math|G {{=}} (V, E)}} and {{math|G&prime; {{=}} (V&prime;, E&prime;)}} be two graphs. Graph {{math|G&prime;}} is a ''sub-graph'' of graph {{math|G}} (written as {{math|G&prime; ⊆ G}}) if {{math|V&prime; ⊆ V}} and {{math|E&prime; ⊆ E ∩ (V&prime; &times; V&prime;)}}. If {{math|G&prime; ⊆ G}} and {{math|G&prime;}} contains all of the edges  {{math|&lang;u, v&rang; ∈ E}} with {{math|u, v ∈ V&prime;}}, then {{math|G&prime;}} is an ''induced sub-graph'' of {{math|G}}. We call {{math|G&prime;}} and {{math|G}} isomorphic (written as {{math|G&prime; ↔ G}}), if there exists a bijection (one-to-one) {{math|f:V&prime; → V}} with  {{math|&lang;u, v&rang; ∈ E&prime; ⇔ &lang;f(u), f(v)&rang; ∈ E}} for all {{math|u, v ∈ V&prime;}}. The mapping {{math|f}} is called an isomorphism between {{math|G}} and {{math|G&prime;}}.<ref name="die1">{{cite journal |author=Diestel R |title=Graph Theory (Graduate Texts in Mathematics) |volume=173 |year=2005|publisher=New York: Springer-Verlag Heidelberg}}</ref>
   −
设{{math|G {{=}} (V, E)}} 和 {{math|G&prime; {{=}} (V&prime;, E&prime;)}} 是两个图。若{{math|V&prime; ⊆ V}}且满足{{math|E&prime; ⊆ E ∩ (V&prime; &times; V&prime;)}})(即图{{math|G&prime; ⊆ G}的所有边和点都属于图{{math|G}})即{{math|G&prime;}}则称图{{math|G&prime; ⊆ G}是图{{math|G}}的一个子图
+
设{{math|G {{=}} (V, E)}} 和 {{math|G&prime; {{=}} (V&prime;, E&prime;)}} 是两个图。若{{math|V&prime; ⊆ V}}且满足{{math|E&prime; ⊆ E ∩ (V&prime; &times; V&prime;)}})(即图{{math|G&prime; ⊆ G}的所有边和点都属于图{{math|G}})则称图{{math|G&prime; ⊆ G}是图{{math|G}}的一个子图
 +
 
 +
{{math|G&prime; ⊆ G}},且对于顶点{{math|u}}、{{math|v}}及其连边,只要{{math|u}}和{{math|v}}存在于{{math|G&prime }}(即若{{math|U}}, {{math|V&prime; ⊆ V}}),那么{{math|G&prime; ⊆ G}}中就应该包含原图{{math|G}}中的所有{{math|u}}和{{math|V}}的对应连边(即{{math|&lang;u, v&rang; ∈ E}}),则称此时图{{math|G&prime }}就是图{{math|G}}的导出子图。
 +
 
 +
如果存在一个双射(一对一){{math|f:V&prime; → V}},且对所有{{math|u, v ∈ V&prime;}}都有{{math|&lang;u, v&rang; ∈ E&prime; ⇔ &lang;f(u), f(v)&rang; ∈ E}} ,则称{{math|G&prime }}是{{math|G}}的同构图(记作:{{math|G&prime; → G}}),映射f则称为{{math|G}}与{{math|G&prime }}之间的同构(isomorphism)。[2]
    
When {{math|G&Prime; ⊂ G}} and there exists an isomorphism between the sub-graph {{math|G&Prime;}} and a graph {{math|G&prime;}}, this mapping represents an ''appearance'' of {{math|G&prime;}} in {{math|G}}. The number of appearances of graph {{math|G&prime;}} in {{math|G}}  is called the frequency {{math|F<sub>G</sub>}} of {{math|G&prime;}} in {{math|G}}. A graph is called ''recurrent'' (or ''frequent'') in {{math|G}}, when its ''frequency'' {{math|F<sub>G</sub>(G&prime;)}} is above a predefined threshold or cut-off value. We use terms ''pattern'' and ''frequent sub-graph'' in this review interchangeably. There is an [[Statistical ensemble (mathematical physics)|ensemble]] {{math|Ω(G)}} of random graphs corresponding to the [[Null model|null-model]] associated to {{math|G}}. We should choose {{math|N}} random graphs uniformly from {{math|Ω(G)}}  and calculate the frequency for a particular frequent sub-graph {{math|G&prime;}} in {{math|G}}. If the frequency of {{math|G&prime;}} in {{math|G}} is higher than its arithmetic mean frequency in {{math|N}} random graphs {{math|R<sub>i</sub>}}, where {{math|1 ≤ i ≤ N}}, we call this recurrent pattern ''significant'' and hence treat {{math|G&prime;}} as a ''network motif'' for {{math|G}}. For a small graph {{math|G&prime;}}, the network {{math|G}} and a set of randomized networks {{math|R(G) ⊆ Ω(R)}}, where {{math|1=R(G) {{=}} N}}, the ''Z-Score'' that has been defined by the following formula:
 
When {{math|G&Prime; ⊂ G}} and there exists an isomorphism between the sub-graph {{math|G&Prime;}} and a graph {{math|G&prime;}}, this mapping represents an ''appearance'' of {{math|G&prime;}} in {{math|G}}. The number of appearances of graph {{math|G&prime;}} in {{math|G}}  is called the frequency {{math|F<sub>G</sub>}} of {{math|G&prime;}} in {{math|G}}. A graph is called ''recurrent'' (or ''frequent'') in {{math|G}}, when its ''frequency'' {{math|F<sub>G</sub>(G&prime;)}} is above a predefined threshold or cut-off value. We use terms ''pattern'' and ''frequent sub-graph'' in this review interchangeably. There is an [[Statistical ensemble (mathematical physics)|ensemble]] {{math|Ω(G)}} of random graphs corresponding to the [[Null model|null-model]] associated to {{math|G}}. We should choose {{math|N}} random graphs uniformly from {{math|Ω(G)}}  and calculate the frequency for a particular frequent sub-graph {{math|G&prime;}} in {{math|G}}. If the frequency of {{math|G&prime;}} in {{math|G}} is higher than its arithmetic mean frequency in {{math|N}} random graphs {{math|R<sub>i</sub>}}, where {{math|1 ≤ i ≤ N}}, we call this recurrent pattern ''significant'' and hence treat {{math|G&prime;}} as a ''network motif'' for {{math|G}}. For a small graph {{math|G&prime;}}, the network {{math|G}} and a set of randomized networks {{math|R(G) ⊆ Ω(R)}}, where {{math|1=R(G) {{=}} N}}, the ''Z-Score'' that has been defined by the following formula:
377

个编辑