更改

大小无更改 、 2020年5月6日 (三) 18:50
第25行: 第25行:  
设{{math|G {{=}} (V, E)}} 和 {{math|G′ {{=}} (V′, E′)}} 是两个图。若{{math|V′ ⊆ V}}且满足{{math|E′ ⊆ E ∩ (V′ × V′)}})(即图{{math|G′ ⊆ G}的所有边和点都属于图{{math|G}})则称图{{math|G′ ⊆ G}是图{{math|G}}的一个子图
 
设{{math|G {{=}} (V, E)}} 和 {{math|G′ {{=}} (V′, E′)}} 是两个图。若{{math|V′ ⊆ V}}且满足{{math|E′ ⊆ E ∩ (V′ × V′)}})(即图{{math|G′ ⊆ G}的所有边和点都属于图{{math|G}})则称图{{math|G′ ⊆ G}是图{{math|G}}的一个子图
   −
若{{math|G′ ⊆ G}},且对于顶点{{math|u}}、{{math|v}}及其连边,只要{{math|u}}和{{math|v}}存在于{{math|G&prime }}(即若{{math|U}}, {{math|V′ ⊆ V}}),那么{{math|G′ ⊆ G}}中就应该包含原图{{math|G}}中的所有{{math|u}}和{{math|V}}的对应连边(即{{math|⟨u, v⟩ ∈ E}}),则称此时图{{math|G&prime }}就是图{{math|G}}的导出子图。
+
若{{math|G′ ⊆ G}},且对于顶点{{math|u}}、{{math|v}}及其连边,只要{{math|u}}和{{math|v}}存在于{{math|G′}}(即若{{math|U}}, {{math|V′ ⊆ V}}),那么{{math|G′ ⊆ G}}中就应该包含原图{{math|G}}中的所有{{math|u}}和{{math|V}}的对应连边(即{{math|⟨u, v⟩ ∈ E}}),则称此时图{{math|G′}}就是图{{math|G}}的导出子图。
   −
如果存在一个双射(一对一){{math|f:V′ → V}},且对所有{{math|u, v ∈ V′}}都有{{math|⟨u, v⟩ ∈ E′ ⇔ ⟨f(u), f(v)⟩ ∈ E}} ,则称{{math|G&prime }}是{{math|G}}的同构图(记作:{{math|G′ → G}}),映射f则称为{{math|G}}与{{math|G&prime }}之间的同构(isomorphism)。[2]
+
如果存在一个双射(一对一){{math|f:V′ → V}},且对所有{{math|u, v ∈ V′}}都有{{math|⟨u, v⟩ ∈ E′ ⇔ ⟨f(u), f(v)⟩ ∈ E}} ,则称{{math|G&prime }}是{{math|G}}的同构图(记作:{{math|G′ → G}}),映射f则称为{{math|G}}与{{math|G′}}之间的同构(isomorphism)。[2]
    
When {{math|G&Prime; ⊂ G}} and there exists an isomorphism between the sub-graph {{math|G&Prime;}} and a graph {{math|G&prime;}}, this mapping represents an ''appearance'' of {{math|G&prime;}} in {{math|G}}. The number of appearances of graph {{math|G&prime;}} in {{math|G}}  is called the frequency {{math|F<sub>G</sub>}} of {{math|G&prime;}} in {{math|G}}. A graph is called ''recurrent'' (or ''frequent'') in {{math|G}}, when its ''frequency'' {{math|F<sub>G</sub>(G&prime;)}} is above a predefined threshold or cut-off value. We use terms ''pattern'' and ''frequent sub-graph'' in this review interchangeably. There is an [[Statistical ensemble (mathematical physics)|ensemble]] {{math|Ω(G)}} of random graphs corresponding to the [[Null model|null-model]] associated to {{math|G}}. We should choose {{math|N}} random graphs uniformly from {{math|Ω(G)}}  and calculate the frequency for a particular frequent sub-graph {{math|G&prime;}} in {{math|G}}. If the frequency of {{math|G&prime;}} in {{math|G}} is higher than its arithmetic mean frequency in {{math|N}} random graphs {{math|R<sub>i</sub>}}, where {{math|1 ≤ i ≤ N}}, we call this recurrent pattern ''significant'' and hence treat {{math|G&prime;}} as a ''network motif'' for {{math|G}}. For a small graph {{math|G&prime;}}, the network {{math|G}} and a set of randomized networks {{math|R(G) ⊆ Ω(R)}}, where {{math|1=R(G) {{=}} N}}, the ''Z-Score'' that has been defined by the following formula:
 
When {{math|G&Prime; ⊂ G}} and there exists an isomorphism between the sub-graph {{math|G&Prime;}} and a graph {{math|G&prime;}}, this mapping represents an ''appearance'' of {{math|G&prime;}} in {{math|G}}. The number of appearances of graph {{math|G&prime;}} in {{math|G}}  is called the frequency {{math|F<sub>G</sub>}} of {{math|G&prime;}} in {{math|G}}. A graph is called ''recurrent'' (or ''frequent'') in {{math|G}}, when its ''frequency'' {{math|F<sub>G</sub>(G&prime;)}} is above a predefined threshold or cut-off value. We use terms ''pattern'' and ''frequent sub-graph'' in this review interchangeably. There is an [[Statistical ensemble (mathematical physics)|ensemble]] {{math|Ω(G)}} of random graphs corresponding to the [[Null model|null-model]] associated to {{math|G}}. We should choose {{math|N}} random graphs uniformly from {{math|Ω(G)}}  and calculate the frequency for a particular frequent sub-graph {{math|G&prime;}} in {{math|G}}. If the frequency of {{math|G&prime;}} in {{math|G}} is higher than its arithmetic mean frequency in {{math|N}} random graphs {{math|R<sub>i</sub>}}, where {{math|1 ≤ i ≤ N}}, we call this recurrent pattern ''significant'' and hence treat {{math|G&prime;}} as a ''network motif'' for {{math|G}}. For a small graph {{math|G&prime;}}, the network {{math|G}} and a set of randomized networks {{math|R(G) ⊆ Ω(R)}}, where {{math|1=R(G) {{=}} N}}, the ''Z-Score'' that has been defined by the following formula:
377

个编辑