更改

大小无更改 、 2020年5月6日 (三) 22:51
第678行: 第678行:  
This motif occurs in the case that several regulators combinatorially control a set of genes  with diverse regulatory combinations. This motif was found in ''[[Escherichia coli|E. coli]]'' in various systems such as carbon utilization, anaerobic growth, stress response and others.<ref name="she1"/><ref name="boy1"/> In order to better understand the function of this motif one has to obtain more information about the way the multiple inputs are integrated by the genes. Kaplan ''et al.''<ref name="kap2">{{cite journal |vauthors=Kaplan S, Bren A, Zaslaver A, Dekel E, Alon U |title=Diverse two-dimensional input functions control bacterial sugar genes |journal=Mol. Cell |volume=29 |issue=6 |pages=786–92 |date=March 2008 |pmid=18374652 |pmc=2366073 |doi=10.1016/j.molcel.2008.01.021 }}</ref> has mapped the input functions of the sugar utilization genes in ''[[Escherichia coli|E. coli]]'', showing diverse shapes.
 
This motif occurs in the case that several regulators combinatorially control a set of genes  with diverse regulatory combinations. This motif was found in ''[[Escherichia coli|E. coli]]'' in various systems such as carbon utilization, anaerobic growth, stress response and others.<ref name="she1"/><ref name="boy1"/> In order to better understand the function of this motif one has to obtain more information about the way the multiple inputs are integrated by the genes. Kaplan ''et al.''<ref name="kap2">{{cite journal |vauthors=Kaplan S, Bren A, Zaslaver A, Dekel E, Alon U |title=Diverse two-dimensional input functions control bacterial sugar genes |journal=Mol. Cell |volume=29 |issue=6 |pages=786–92 |date=March 2008 |pmid=18374652 |pmc=2366073 |doi=10.1016/j.molcel.2008.01.021 }}</ref> has mapped the input functions of the sugar utilization genes in ''[[Escherichia coli|E. coli]]'', showing diverse shapes.
   −
==完善的模体及其功能==
+
==已知的模体及其功能==
 
许多实验工作致力于理解[[基因调控网络]]中的网络模体。在响应生物信号的过程中,这些网络控制细胞中的哪些基因来表达。这样的网络以基因作为节点,有向边代表对某个基因的调控,基因调控通过其他基因编码的转录因[[结合在DNA上的调控蛋白]]子来实现。因此,网络模体是基因之间相互调控转录速率的模式。在分析转录调控网络的时候,人们发现相同的网络模体在不同的物种中不断地出现,从细菌到人类。例如,''[[大肠杆菌]]''和酵母的转录网络由三种主要的网络模体家族组成,它们可以构建几乎整个网络。主要的假设是在进化的过程中,网络模体是被以收敛的方式独立选择出来的。<ref name="bab1">{{cite journal |vauthors=Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA |title=Structure and evolution of transcriptional regulatory networks |journal=Current Opinion in Structural Biology |volume=14 |issue=3 |pages=283–91 |date=June 2004 |pmid=15193307 |doi=10.1016/j.sbi.2004.05.004 |citeseerx=10.1.1.471.9692 }}</ref><ref name="con1">{{cite journal |vauthors=Conant GC, Wagner A |title=Convergent evolution of gene circuits |journal=Nat. Genet. |volume=34 |issue=3 |pages=264–6 |date=July 2003 |pmid=12819781 |doi=10.1038/ng1181}}</ref> 因为相对于基因改变的速率,转录相互作用产生和消失的时间尺度在进化上是很快的。<ref name="bab1"/><ref name="con1"/><ref name="dek1">{{cite journal |vauthors=Dekel E, Alon U |title=Optimality and evolutionary tuning of the expression level of a protein |journal=Nature |volume=436 |issue=7050 |pages=588–92 |date=July 2005 |pmid=16049495 |doi=10.1038/nature03842 |bibcode=2005Natur.436..588D }}</ref> 此外,对活细胞中网络模体所产生的动力学行为的实验表明,它们具有典型的动力学功能。这表明,网络模体是基因调控网络中对生物体有益的基本单元。
 
许多实验工作致力于理解[[基因调控网络]]中的网络模体。在响应生物信号的过程中,这些网络控制细胞中的哪些基因来表达。这样的网络以基因作为节点,有向边代表对某个基因的调控,基因调控通过其他基因编码的转录因[[结合在DNA上的调控蛋白]]子来实现。因此,网络模体是基因之间相互调控转录速率的模式。在分析转录调控网络的时候,人们发现相同的网络模体在不同的物种中不断地出现,从细菌到人类。例如,''[[大肠杆菌]]''和酵母的转录网络由三种主要的网络模体家族组成,它们可以构建几乎整个网络。主要的假设是在进化的过程中,网络模体是被以收敛的方式独立选择出来的。<ref name="bab1">{{cite journal |vauthors=Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA |title=Structure and evolution of transcriptional regulatory networks |journal=Current Opinion in Structural Biology |volume=14 |issue=3 |pages=283–91 |date=June 2004 |pmid=15193307 |doi=10.1016/j.sbi.2004.05.004 |citeseerx=10.1.1.471.9692 }}</ref><ref name="con1">{{cite journal |vauthors=Conant GC, Wagner A |title=Convergent evolution of gene circuits |journal=Nat. Genet. |volume=34 |issue=3 |pages=264–6 |date=July 2003 |pmid=12819781 |doi=10.1038/ng1181}}</ref> 因为相对于基因改变的速率,转录相互作用产生和消失的时间尺度在进化上是很快的。<ref name="bab1"/><ref name="con1"/><ref name="dek1">{{cite journal |vauthors=Dekel E, Alon U |title=Optimality and evolutionary tuning of the expression level of a protein |journal=Nature |volume=436 |issue=7050 |pages=588–92 |date=July 2005 |pmid=16049495 |doi=10.1038/nature03842 |bibcode=2005Natur.436..588D }}</ref> 此外,对活细胞中网络模体所产生的动力学行为的实验表明,它们具有典型的动力学功能。这表明,网络模体是基因调控网络中对生物体有益的基本单元。
  
320

个编辑