更改

删除1字节 、 2020年5月11日 (一) 11:54
第426行: 第426行:     
The [[Barabási–Albert model]] is a random network model used to demonstrate a preferential attachment or a "rich-get-richer" effect.  In this model, an edge is most likely to attach to nodes with higher degrees.The network begins with an initial network of ''m''<sub>0</sub> nodes.  ''m''<sub>0</sub>&nbsp;≥&nbsp;2 and the degree of each node in the initial network should be at least&nbsp;1, otherwise it will always remain disconnected from the rest of the network.
 
The [[Barabási–Albert model]] is a random network model used to demonstrate a preferential attachment or a "rich-get-richer" effect.  In this model, an edge is most likely to attach to nodes with higher degrees.The network begins with an initial network of ''m''<sub>0</sub> nodes.  ''m''<sub>0</sub>&nbsp;≥&nbsp;2 and the degree of each node in the initial network should be at least&nbsp;1, otherwise it will always remain disconnected from the rest of the network.
  −
=== Barabási–Albert (BA) 优先链接模型 ===
  −
BA模型是一个随机网络模型,用于说明偏好依附效应(优先链接)preferential attachment或“富人越富”效应。 在这个模型中,边最有可能附着在度数较高的节点上。 这个网络从一个 m0节点的初始网络开始。 M0≥2,初始网络中每个节点的度至少为1,否则它将始终与网络的其余部分断开。
  −
        第493行: 第489行:     
However,  for <math>m=1</math> it describes the winner takes it all mechanism as we find that almost <math>99\%</math> of the total nodes have degree one and one is super-rich in degree. As <math>m</math> value increases the disparity between the super rich and poor decreases and as <math>m>14</math> we find a transition from rich get super richer to rich get richer mechanism.
 
However,  for <math>m=1</math> it describes the winner takes it all mechanism as we find that almost <math>99\%</math> of the total nodes have degree one and one is super-rich in degree. As <math>m</math> value increases the disparity between the super rich and poor decreases and as <math>m>14</math> we find a transition from rich get super richer to rich get richer mechanism.
 +
 +
=== Barabási–Albert (BA) 优先链接模型 ===
 +
BA模型是一个随机网络模型,用于说明偏好依附效应(优先链接)preferential attachment或“富人越富”效应。 在这个模型中,边最有可能附着在度数较高的节点上。 这个网络从一个 m0节点的初始网络开始。 M0≥2,初始网络中每个节点的度至少为1,否则它将始终与网络的其余部分断开。
    
=== Fitness model ===
 
=== Fitness model ===
320

个编辑