更改

删除10字节 、 2020年5月17日 (日) 19:03
第71行: 第71行:  
<ref>{{cite journal|first1=Jaideep |last1=Srivastava |first2=Robert |last2=Cooley |first3=Mukund |last3=Deshpande |first4=Pang-Ning |last4=Tan |journal=Proceedings of the ACM Conference on Knowledge Discovery and Data Mining |title=Web usage mining: discovery and applications of usage patterns from Web data|volume=1 |year=2000 |pages=12–23 |doi=10.1145/846183.846188|issue=2}}</ref><ref>{{cite journal|doi=10.1016/S0169-7552(98)00110-X|title=The anatomy of a large-scale hypertextual Web search engine |first1=Sergey |last1=Brin |first2=Lawrence |last2=Page |journal=Computer Networks and ISDN Systems |volume=30 |issue=1–7 |pages=107–117 |date=April 1998|citeseerx=10.1.1.115.5930 }}</ref>
 
<ref>{{cite journal|first1=Jaideep |last1=Srivastava |first2=Robert |last2=Cooley |first3=Mukund |last3=Deshpande |first4=Pang-Ning |last4=Tan |journal=Proceedings of the ACM Conference on Knowledge Discovery and Data Mining |title=Web usage mining: discovery and applications of usage patterns from Web data|volume=1 |year=2000 |pages=12–23 |doi=10.1145/846183.846188|issue=2}}</ref><ref>{{cite journal|doi=10.1016/S0169-7552(98)00110-X|title=The anatomy of a large-scale hypertextual Web search engine |first1=Sergey |last1=Brin |first2=Lawrence |last2=Page |journal=Computer Networks and ISDN Systems |volume=30 |issue=1–7 |pages=107–117 |date=April 1998|citeseerx=10.1.1.115.5930 }}</ref>
   −
[[File:Tripletsnew2012.png|thumb|right|Narrative network of US Elections 2012<ref name="ReferenceA">{{cite journal|title=Automated analysis of the US presidential elections using Big Data and network analysis|author1=S Sudhahar|author2=GA Veltri|author3=N Cristianini|journal=Big Data & Society|volume=2|issue=1|pages=1–28|year=2015|doi=10.1177/2053951715572916|doi-access=free}}</ref>]]
+
[[File:Tripletsnew2012.png|thumb|right|美国大选叙事网络2012<ref name="ReferenceA">{{cite journal|title=Automated analysis of the US presidential elections using Big Data and network analysis|author1=S Sudhahar|author2=GA Veltri|author3=N Cristianini|journal=Big Data & Society|volume=2|issue=1|pages=1–28|year=2015|doi=10.1177/2053951715572916|doi-access=free}}</ref>]]
 
语料库自动解析技术可以大规模地抽取文本中的实体,以及实体间的关系,以将文本形式数据转化成网络形式数据。生成的网络可以包含成千上万个节点,随后应用网络理论等工具加以分析,即可发现关键结点、重点社群等,以及更加广泛的网络属性,比如健壮性和结构稳定性,或者结构洞等。<ref>{{cite journal|title=Network analysis of narrative content in large corpora|author1=S Sudhahar|author2=G De Fazio|author3=R Franzosi|author4=N Cristianini|journal=Natural Language Engineering|volume=21|issue=1|pages=1–32|year=2013|doi=10.1017/S1351324913000247 |url=https://research-information.bristol.ac.uk/files/129621186/Network_Analysis_of_Narrative_Content_in_Large_Corpora.pdf}}</ref>如此,我们可以自动执行定量叙事分析 quantitative narrative analysis中的技术,<ref>{{cite book|title=Quantitative Narrative Analysis|last=Franzosi|first=Roberto|publisher=Emory University|year=2010}}</ref>识别“主语-谓语-宾语”这样的三元组或者“主语-宾语”这样的二元组。<ref name="ReferenceA"/>
 
语料库自动解析技术可以大规模地抽取文本中的实体,以及实体间的关系,以将文本形式数据转化成网络形式数据。生成的网络可以包含成千上万个节点,随后应用网络理论等工具加以分析,即可发现关键结点、重点社群等,以及更加广泛的网络属性,比如健壮性和结构稳定性,或者结构洞等。<ref>{{cite journal|title=Network analysis of narrative content in large corpora|author1=S Sudhahar|author2=G De Fazio|author3=R Franzosi|author4=N Cristianini|journal=Natural Language Engineering|volume=21|issue=1|pages=1–32|year=2013|doi=10.1017/S1351324913000247 |url=https://research-information.bristol.ac.uk/files/129621186/Network_Analysis_of_Narrative_Content_in_Large_Corpora.pdf}}</ref>如此,我们可以自动执行定量叙事分析 quantitative narrative analysis中的技术,<ref>{{cite book|title=Quantitative Narrative Analysis|last=Franzosi|first=Roberto|publisher=Emory University|year=2010}}</ref>识别“主语-谓语-宾语”这样的三元组或者“主语-宾语”这样的二元组。<ref name="ReferenceA"/>
  
863

个编辑