更改

删除4,154字节 、 2020年5月18日 (一) 17:25
第403行: 第403行:     
由于Watts–Strogatz 模型的初始网络具有非随机的规则结构,它具有很高的聚集系数和平均路径长度。每次重新连接都可能在高度连接的集群之间创建一条捷径。随着重连接概率的增加,聚集系数的下降速度慢于平均路径长度。实际上,这使得网络的平均路径长度显著降低,而聚集系数只略微降低。更高的重连接概率<math>p</math>会导致更多的边重新连接,这实际上使Watts Strogatz模型趋于随机网络。
 
由于Watts–Strogatz 模型的初始网络具有非随机的规则结构,它具有很高的聚集系数和平均路径长度。每次重新连接都可能在高度连接的集群之间创建一条捷径。随着重连接概率的增加,聚集系数的下降速度慢于平均路径长度。实际上,这使得网络的平均路径长度显著降低,而聚集系数只略微降低。更高的重连接概率<math>p</math>会导致更多的边重新连接,这实际上使Watts Strogatz模型趋于随机网络。
  −
=== Barabási–Albert (BA) preferential attachment model ===
  −
  −
The [[Barabási–Albert model]] is a random network model used to demonstrate a preferential attachment or a "rich-get-richer" effect.  In this model, an edge is most likely to attach to nodes with higher degrees.The network begins with an initial network of ''m''<sub>0</sub> nodes.  ''m''<sub>0</sub>&nbsp;≥&nbsp;2 and the degree of each node in the initial network should be at least&nbsp;1, otherwise it will always remain disconnected from the rest of the network.
  −
  −
  −
In the BA model, new nodes are added to the network one at a time. Each new node is connected to <math>m</math> existing nodes with a probability that is proportional to the number of links that the existing nodes already have. Formally, the probability ''p''<sub>''i''</sub> that the new node is connected to node ''i'' is<ref name=RMP>{{Cite journal
  −
|url        = http://www.nd.edu/~networks/Publication%20Categories/03%20Journal%20Articles/Physics/StatisticalMechanics_Rev%20of%20Modern%20Physics%2074,%2047%20(2002).pdf
  −
|author1    = R. Albert
  −
|author2    = A.-L. Barabási
  −
|title      = Statistical mechanics of complex networks
  −
|journal    = [[Reviews of Modern Physics]]
  −
|volume      = 74
  −
|issue    = 1
  −
|pages      = 47–97
  −
|year        = 2002
  −
|doi        = 10.1103/RevModPhys.74.47
  −
|bibcode    = 2002RvMP...74...47A
  −
|arxiv      = cond-mat/0106096
  −
|url-status    = dead
  −
|archiveurl  = https://web.archive.org/web/20150824235818/http://www3.nd.edu/~networks/Publication%20Categories/03%20Journal%20Articles/Physics/StatisticalMechanics_Rev%20of%20Modern%20Physics%2074,%2047%20(2002).pdf
  −
|archivedate = 2015-08-24
  −
|citeseerx    = 10.1.1.242.4753
  −
}}</ref>
  −
  −
: <math>p_i = \frac{k_i}{\sum_j k_j},</math>
  −
  −
where ''k''<sub>''i''</sub> is the degree of node ''i''. Heavily linked nodes ("hubs") tend to quickly accumulate even more links, while nodes with only a few links are unlikely to be chosen as the destination for a new link. The new nodes have a "preference" to attach themselves to the already heavily linked nodes.
  −
  −
[[File:Barabasi-albert model degree distribution.svg|thumb|The degree distribution of the BA Model, which follows a power law. In loglog scale the power law function is a straight line.<ref name=Barabasi1999>{{Cite journal
  −
|url        = http://www.nd.edu/~networks/Publication%20Categories/03%20Journal%20Articles/Physics/EmergenceRandom_Science%20286,%20509-512%20(1999).pdf
  −
|author      = [[Albert-László Barabási]] & [[Réka Albert]]
  −
|title      = Emergence of scaling in random networks
  −
|journal    = [[Science (journal)|Science]]
  −
|volume      = 286
  −
|pages      = 509&ndash;512
  −
|date        = October 1999
  −
|doi        = 10.1126/science.286.5439.509
  −
|issue      = 5439
  −
|pmid        = 10521342
  −
|arxiv      = cond-mat/9910332
  −
|bibcode    = 1999Sci...286..509B
  −
|url-status    = dead
  −
|archiveurl  = https://web.archive.org/web/20120417112354/http://www.nd.edu/~networks/Publication%20Categories/03%20Journal%20Articles/Physics/EmergenceRandom_Science%20286,%20509-512%20(1999).pdf
  −
|archivedate = 2012-04-17
  −
}}</ref>]]
  −
The degree distribution resulting from the BA model is scale free, in particular, it is a power law of the form:
  −
: <math>P(k)\sim k^{-3} \, </math>
  −
  −
Hubs exhibit high betweenness centrality which allows short paths to exist between nodes. As a result, the BA model tends to have very short average path lengths. The clustering coefficient of this model also tends to 0.
  −
While the diameter, D, of many models including the Erdős Rényi random graph model and several small world networks is proportional to log N, the BA model exhibits D~loglogN (ultrasmall world).<ref>{{cite journal|last=Cohen|first=R. |title=Scale-free networks are ultrasmall|journal=Phys. Rev. Lett.|year=2003|volume=90|pages=058701|url=http://havlin.biu.ac.il/Publications.php?keyword=Scale-free+networks+are+ultrasmall&year=*&match=all|doi=10.1103/PhysRevLett.90.058701|pmid=12633404|first2=S.|last2=Havlin|issue=5|bibcode=2003PhRvL..90e8701C |arxiv=cond-mat/0205476}}</ref>
  −
Note that the average path length scales with N as the diameter.
      
====Mediation-driven attachment (MDA) model====
 
====Mediation-driven attachment (MDA) model====
198

个编辑