更改

添加716字节 、 2020年5月21日 (四) 21:54
无编辑摘要
第11行: 第11行:       −
初始条件中的微小差异,例如数值计算中的舍入误差,可能导致此类动力系统的结果差异很大,使得对其行为的长期预测通常是不可能的。<ref>{{cite book |last = Kellert |first = Stephen H. |title = In the Wake of Chaos: Unpredictable Order in Dynamical Systems |url = https://archive.org/details/inwakeofchaosunp0000kell |url-access = registration |publisher = University of Chicago Press |year = 1993 |isbn = 978-0-226-42976-2 |page = [https://archive.org/details/inwakeofchaosunp0000kell/page/32 32] |ref = harv }}</ref>即使这些系统是确定性的,这意味着它们未来的行为遵循一个独特的演变<ref name=":2">{{Citation|last=Bishop|first=Robert|title=Chaos|date=2017|url=https://plato.stanford.edu/archives/spr2017/entries/chaos/|encyclopedia=The Stanford Encyclopedia of Philosophy|editor-last=Zalta|editor-first=Edward N.|edition=Spring 2017|publisher=Metaphysics Research Lab, Stanford University|access-date=2019-11-24}}</ref>,完全由它们的初始条件决定,没有任何随机因素参与。<ref>{{harvnb|Kellert|1993|p=56}}</ref>换句话说,这些系统的确定性本质并不能使它们具有可预测性。<ref>{{harvnb|Kellert|1993|p=62}}</ref><ref name="WerndlCharlotte">{{cite journal |author = Werndl, Charlotte |title = What are the New Implications of Chaos for Unpredictability? |journal = The British Journal for the Philosophy of Science |volume = 60 |issue = 1 |pages = 195–220 |year = 2009 |doi = 10.1093/bjps/axn053 |arxiv = 1310.1576 }}</ref>这种行为被称为'''确定性混沌''',或简单的混沌。[[爱德华·洛伦茨 Edward Lorenz]]将这一理论总结为:<ref>{{cite web |url = http://mpe.dimacs.rutgers.edu/2013/03/17/chaos-in-an-atmosphere-hanging-on-a-wall/ |title = Chaos in an Atmosphere Hanging on a Wall |last1 = Danforth |first1 = Christopher M. |date = April 2013 |work = Mathematics of Planet Earth 2013 |accessdate = 12 June 2018 }}</ref>
+
初始条件中的微小差异,例如数值计算中的舍入误差,可能导致此类动力系统的结果差异很大,使得对其行为的长期预测通常是不可能的。<ref>{{cite book |last = Kellert |first = Stephen H. |title = In the Wake of Chaos: Unpredictable Order in Dynamical Systems |url = https://archive.org/details/inwakeofchaosunp0000kell |url-access = registration |publisher = University of Chicago Press |year = 1993 |isbn = 978-0-226-42976-2 |page = [https://archive.org/details/inwakeofchaosunp0000kell/page/32 32] |ref = harv }}</ref>即使这些系统是确定性的,这意味着它们未来的行为遵循一个独特的演变<ref name=":2">{{Citation|last=Bishop|first=Robert|title=Chaos|date=2017|url=https://plato.stanford.edu/archives/spr2017/entries/chaos/|encyclopedia=The Stanford Encyclopedia of Philosophy|editor-last=Zalta|editor-first=Edward N.|edition=Spring 2017|publisher=Metaphysics Research Lab, Stanford University|access-date=2019-11-24}}</ref>,完全由它们的初始条件决定,没有任何随机因素参与。<ref><ref>{{cite book |last = Kellert |first = Stephen H. |title = In the Wake of Chaos: Unpredictable Order in Dynamical Systems |url = https://archive.org/details/inwakeofchaosunp0000kell |url-access = registration |publisher = University of Chicago Press |year = 1993 |isbn = 978-0-226-42976-2 |page = [https://archive.org/details/inwakeofchaosunp0000kell/page/56 56] |ref = harv }}</ref></ref>换句话说,这些系统的确定性本质并不能使它们具有可预测性。<ref><ref>{{cite book |last = Kellert |first = Stephen H. |title = In the Wake of Chaos: Unpredictable Order in Dynamical Systems |url = https://archive.org/details/inwakeofchaosunp0000kell |url-access = registration |publisher = University of Chicago Press |year = 1993 |isbn = 978-0-226-42976-2 |page = [https://archive.org/details/inwakeofchaosunp0000kell/page/62 62] |ref = harv }}</ref></ref><ref name="WerndlCharlotte">{{cite journal |author = Werndl, Charlotte |title = What are the New Implications of Chaos for Unpredictability? |journal = The British Journal for the Philosophy of Science |volume = 60 |issue = 1 |pages = 195–220 |year = 2009 |doi = 10.1093/bjps/axn053 |arxiv = 1310.1576 }}</ref>这种行为被称为'''确定性混沌''',或简单的混沌。[[爱德华·洛伦茨 Edward Lorenz]]将这一理论总结为:<ref>{{cite web |url = http://mpe.dimacs.rutgers.edu/2013/03/17/chaos-in-an-atmosphere-hanging-on-a-wall/ |title = Chaos in an Atmosphere Hanging on a Wall |last1 = Danforth |first1 = Christopher M. |date = April 2013 |work = Mathematics of Planet Earth 2013 |accessdate = 12 June 2018 }}</ref>
     
7,129

个编辑