更改

无编辑摘要
第1行: 第1行: −
 
+
{{#seo:
 +
|keywords=演化算法,人工智能,,生物演化
 +
|description=演化计算,基因表达
 +
}}
      第34行: 第37行:  
==与生物过程的比较==
 
==与生物过程的比较==
   −
对于演化算法来说,一个可能的局限可能是缺少对基因型和表现型的明确区分。在大自然中,一个受精卵会历经一个成为胚胎发育的过程,然后成为一个成熟的表现型。自然选择以表现型而非基因型为选择标准。这种间接编码被认为可以使得演化过程更健壮(降低致命突变的概率),并提高器官的进化能力<ref>G.S. Hornby and J.B. Pollack. "Creating high-level components with a generative representation for body-brain evolution". ''[[Artificial Life (journal)|Artificial Life]]'', 8(3):223–246, 2002.</ref><ref>Jeff Clune, Benjamin Beckmann, Charles Ofria, and Robert Pennock. [http://www.ofria.com/pubs/2009CluneEtAl.pdf "Evolving Coordinated Quadruped Gaits with the HyperNEAT Generative Encoding"] {{Webarchive|url=https://web.archive.org/web/20160603205252/http://www.ofria.com/pubs/2009CluneEtAl.pdf |date=2016-06-03 }}. ''Proceedings of the IEEE Congress on Evolutionary Computing Special Section on Evolutionary Robotics'', 2009. Trondheim, Norway.</ref> 。这种间接编码还使得演化能够充分利用环境的规律<ref>J. Clune, C. Ofria, and R. T. Pennock, [http://jeffclune.com/publications/Clune-HyperNEATandRegularity.pdf "How a generative encoding fares as problem-regularity decreases"], in ''PPSN'' (G. Rudolph, T. Jansen, S. M. Lucas, C. Poloni, and N. Beume, eds.), vol. 5199 of ''Lecture Notes in Computer Science'', pp. 358–367, Springer, 2008.</ref>。最近有关人工胚胎学(artificial embryogeny)和人工发展系统(artificial developmental system)的工作也在寻求解决这一局限的方法。基因表达规划这一技术在基因型-表现型系统的探索中取得成功,其中基因型包括固定长度地线性多基因染色体,而表现型则包括了规模可变的多重表达式树或者计算机程序<ref>Ferreira, C., 2001. [http://www.gene-expression-programming.com/webpapers/GEP.pdf "Gene Expression Programming: A New Adaptive Algorithm for Solving Problems"]. ''Complex Systems'', Vol. 13, issue 2: 87–129.</ref>。
+
对于演化算法来说,一个可能的局限可能是缺少对基因型和表现型的明确区分。在大自然中,一个受精卵会历经一个成为胚胎发育的过程,然后成为一个成熟的表现型。自然选择以表现型而非基因型为选择标准。这种间接编码被认为可以使得演化过程更健壮(降低致命突变的概率),并提高器官的进化能力<ref>G.S. Hornby and J.B. Pollack. "Creating high-level components with a generative representation for body-brain evolution". ''[[Artificial Life (journal)|Artificial Life]]'', 8(3):223–246, 2002.</ref><ref>Jeff Clune, Benjamin Beckmann, Charles Ofria, and Robert Pennock. [http://www.ofria.com/pubs/2009CluneEtAl.pdf "Evolving Coordinated Quadruped Gaits with the HyperNEAT Generative Encoding"] {{Webarchive|url=https://web.archive.org/web/20160603205252/http://www.ofria.com/pubs/2009CluneEtAl.pdf |date=2016-06-03 }}. ''Proceedings of the IEEE Congress on Evolutionary Computing Special Section on Evolutionary Robotics'', 2009. Trondheim, Norway.</ref> 。这种间接编码还使得演化能够充分利用环境的规律<ref>J. Clune, C. Ofria, and R. T. Pennock, [http://jeffclune.com/publications/Clune-HyperNEATandRegularity.pdf "How a generative encoding fares as problem-regularity decreases"], in ''PPSN'' (G. Rudolph, T. Jansen, S. M. Lucas, C. Poloni, and N. Beume, eds.), vol. 5199 of ''Lecture Notes in Computer Science'', pp. 358–367, Springer, 2008.</ref>。最近有关[[人工胚胎学]] artificial embryogeny 和[[人工发展系统]] artificial developmental system 的工作也在寻求解决这一局限的方法。基因表达规划这一技术在基因型-表现型系统的探索中取得成功,其中基因型包括固定长度地线性多基因染色体,而表现型则包括了规模可变的多重表达式树或者计算机程序<ref>Ferreira, C., 2001. [http://www.gene-expression-programming.com/webpapers/GEP.pdf "Gene Expression Programming: A New Adaptive Algorithm for Solving Problems"]. ''Complex Systems'', Vol. 13, issue 2: 87–129.</ref>。
      第114行: 第117行:     
/ 画廊
 
/ 画廊
        第122行: 第124行:       −
 
+
==其他参阅==
==Bibliography==
      
* Ashlock, D. (2006), ''Evolutionary Computation for Modeling and Optimization'', Springer, {{ISBN|0-387-22196-4}}.
 
* Ashlock, D. (2006), ''Evolutionary Computation for Modeling and Optimization'', Springer, {{ISBN|0-387-22196-4}}.
第155行: 第156行:  
* {{cite journal |last1=Rahman |first1=Rosshairy Abd. |last2=Kendall |first2=Graham |last3=Ramli |first3=Razamin |last4=Jamari |first4=Zainoddin |last5=Ku-Mahamud |first5=Ku Ruhana |title=Shrimp Feed Formulation via Evolutionary Algorithm with Power Heuristics for Handling Constraints |journal=Complexity |date=2017 |volume=2017 |pages=1–12 |doi=10.1155/2017/7053710 |doi-access=free }}
 
* {{cite journal |last1=Rahman |first1=Rosshairy Abd. |last2=Kendall |first2=Graham |last3=Ramli |first3=Razamin |last4=Jamari |first4=Zainoddin |last5=Ku-Mahamud |first5=Ku Ruhana |title=Shrimp Feed Formulation via Evolutionary Algorithm with Power Heuristics for Handling Constraints |journal=Complexity |date=2017 |volume=2017 |pages=1–12 |doi=10.1155/2017/7053710 |doi-access=free }}
    +
==编者推荐==
      −
{{DEFAULTSORT:Evolutionary Algorithm}}
  −
  −
[[Category:Cybernetics]]
  −
  −
Category:Cybernetics
  −
  −
类别: 控制论
  −
  −
[[Category:Evolution]]
  −
  −
Category:Evolution
  −
  −
分类: 进化
  −
  −
[[Category:Evolutionary algorithms| ]]
     −
[[Category:Optimization algorithms and methods]]
     −
Category:Optimization algorithms and methods
     −
类别: 优化算法和方法
+
'''''本中文词条由[[用户:许许|许许]]编辑,欢迎在讨论页面留言'''''。
   −
<noinclude>
+
'''本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。'''
   −
<small>This page was moved from [[wikipedia:en:Evolutionary algorithm]]. Its edit history can be viewed at [[进化算法/edithistory]]</small></noinclude>
     −
[[Category:待整理页面]]
+
[[Category:控制论]]
 +
[[Category:进化]]
 +
[[Category:优化算法和方法]]
330

个编辑