更改

删除7字节 、 2020年5月24日 (日) 18:32
第684行: 第684行:  
In liquids and dense gases, it is not valid to immediately discard the correlations between particles after one collision. The BBGKY hierarchy (Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy) gives a method for deriving Boltzmann-type equations but also extending them beyond the dilute gas case, to include correlations after a few collisions.
 
In liquids and dense gases, it is not valid to immediately discard the correlations between particles after one collision. The BBGKY hierarchy (Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy) gives a method for deriving Boltzmann-type equations but also extending them beyond the dilute gas case, to include correlations after a few collisions.
   −
在液体和稠密气体中,在一次碰撞后立即抛弃粒子之间的关联是无效的。Bbgky 层次结构(Bogoliubov-Born-Green-Kirkwood-Yvon 层次结构)提供了一种推导 boltzmann 型方程的方法,但也将它们扩展到稀释气体情况之外,包括在几次碰撞之后的相关性。
+
在液体和稠密气体中,不能在一次碰撞后立即丢掉粒子之间的关联。BBGKY 层级结构(Bogoliubov-Born-Green-Kirkwood-Yvon 层级结构)提供了一种推导玻尔兹曼型方程的方法,但也可以将它们扩展到稀薄气体情况之外,包括在几次碰撞之后的相关性。
      第692行: 第692行:  
|3 = Keldysh formalism (a.k.a. NEGF—non-equilibrium Green functions):
 
|3 = Keldysh formalism (a.k.a. NEGF—non-equilibrium Green functions):
   −
| 3 Keldysh 形式主义。NEGF—non-equilibrium Green functions):
+
| 3 Keldysh 公式。NEGF—非平衡态格林函数):
    
A quantum approach to including stochastic dynamics is found in the Keldysh formalism. This approach often used in electronic [[quantum transport]] calculations.
 
A quantum approach to including stochastic dynamics is found in the Keldysh formalism. This approach often used in electronic [[quantum transport]] calculations.
第698行: 第698行:  
A quantum approach to including stochastic dynamics is found in the Keldysh formalism. This approach often used in electronic quantum transport calculations.
 
A quantum approach to including stochastic dynamics is found in the Keldysh formalism. This approach often used in electronic quantum transport calculations.
   −
Keldysh 公式中发现了包含随机动力学的量子方法。这种方法常用于电子量子输运计算。
+
人们在 Keldysh 公式中发明了包含随机动力学的量子方法,这种方法常用于电子量子输运计算。
    
|4 = Stochastic [[Liouville's theorem (Hamiltonian)|Liouville equation]]
 
|4 = Stochastic [[Liouville's theorem (Hamiltonian)|Liouville equation]]
第704行: 第704行:  
|4 = Stochastic Liouville equation
 
|4 = Stochastic Liouville equation
   −
| 4随机 Liouville 方程
+
| 4随机 刘维尔方程
    
}}
 
}}
320

个编辑