鲁棒性
此词条暂由Jie翻译
鲁棒性Robustness(承受故障和干扰的能力)是许多复杂系统(包括复杂网络)的关键属性。
复杂网络的鲁棒性研究对许多领域都非常重要。在生态学中,鲁棒性是生态系统的重要属性,可以使人们深入了解对诸如物种灭绝等干扰因素的反应。对于生物学家而言,网络鲁棒性可以帮助研究疾病和突变,以及如何从某些突变中恢复过来。对于经济学,网络鲁棒性原则可以帮助理解银行系统的稳定性和风险。同时在工程中,网络鲁棒性可以帮助评估基础建设网络(如互联网或电网)的恢复能力。
渗流理论
复杂网络的鲁棒性主要是关注移除节点或链接后的网络响应情况。可以将这个过程的数学模型视为逆渗透过程。渗流理论模拟了将小卵石以概率[math]\displaystyle{ p_c }[/math]随机放置在[math]\displaystyle{ n }[/math]维晶格上的过程,并以临界概率来预测突然形成单个簇群的过程。在渗流理论中,该簇群被称为渗流簇。这种现象可以通过许多参数来量化,例如平均簇大小[math]\displaystyle{ \langle s \rangle }[/math]。它表示所有有限簇的平均大小,并由以下方程式给出:
[math]\displaystyle{
\langle s \rangle \sim \left|p - p_c\right|^{\gamma_p}
}[/math]
我们可以看到平均聚类大小的簇群突然在临界概率附近发散,表明形成了单个大簇群。需要注意的是指数 [math]\displaystyle{ \gamma_p }[/math] 对于所有晶格都是通用的,而 [math]\displaystyle{ p_c }[/math] 却不是的。这点非常重要,因为它表明在基于拓扑学观点上存在通用相变行为。可以将复杂网络中的鲁棒性问题视为渗透一个簇群开始,紧接着除去该簇群中卵石的关键部分最终以使该簇群瓦解。类似于渗流理论中渗流簇的形成,复杂网络的崩溃突然发生在相变过程中移除某些关键节点。
随机故障的临界阈值
关于复杂网络失去其庞大组成部分的阈值,其数学推导遵循 Molloy-Reed准则:
[math]\displaystyle{
\kappa \equiv \frac{\langle k^2 \rangle}{\langle k \rangle} \gt 2
}[/math]
Molloy-Reed准则基于以下基本原理:为了形成一个巨大的组件,网络中的每个节点平均必须至少具有两个链接。这类似于每个人握住另外两个人的手以形成一条链。依据这一标准和相关的数学证明,对于复杂网络巨型组件的故障,可以得到一个需要移除的部分节点的临界阈值。
[math]\displaystyle{
f_c=1-\frac{1}{\frac{\langle k^2 \rangle}{\langle k \rangle}-1}
}[/math]
该发现具有一个极其重要的性质,其临界阈值仅取决于度分布的一阶矩和二阶矩,并且对于任意度分布均有效。
随机网络
使用 [math]\displaystyle{ \langle k^2 \rangle = \langle k \rangle(\langle k \rangle+1) }[/math] 表示 Erdős-Rényi(ER)随机图,可以重新表达随机网络的临界点。
[math]\displaystyle{
f_c^{ER}=1-\frac{1}{\langle k \rangle}
}[/math]
随着随机网络变得越来越密集,临界阈值会增加,这意味着必须移除更高比例的节点才能断开巨型组件的连接。
无标度网络
通过将临界阈值重新表达为 无标度网络 Scale-free network的γ指数函数,我们可以得出有关无标度网络鲁棒性的两个重要结论:
[math]\displaystyle{ \begin{align} f_c &=1-\frac{1}{\kappa-1}\\ \kappa &=\frac{\langle k^2\rangle}{\langle k \rangle}=\left|\frac{2-\gamma}{3-\gamma}\right|A \\ A &=K_{min},~\gamma \gt 3 \\ A &=K_{max}^{3-\gamma}K_{min}^{\gamma-2},~3 \gt \gamma \gt 2 \\ A &=K_{max},~2 \gt \gamma \gt 1 \\ &where~K_{max}=K_{min}N^{\frac{1}{\gamma - 1}} \end{align} }[/math]
对于大于3的[math]\displaystyle{ γ }[/math],临界阈值仅取决于[math]\displaystyle{ γ }[/math]和最小度。这种情况下,网络的部分节点被移除,之后该网络会像随机网络瓦解一般。对于小于3的[math]\displaystyle{ γ }[/math],随着[math]\displaystyle{ N }[/math]趋于无穷大,[math]\displaystyle{ \kappa }[/math]的极限会发散。在这种情况下,对于大型无标度网络,关键阈值接近1。从本质上讲,这意味着几乎要移除所有节点才能破坏巨型组件,该大型无标度网络在应对随机故障方面非常强大。通过考虑无标度网络尤其是枢纽的异构性,可以直观地理解这一点。由于相对较少的枢纽节点,因此不太可能通过随机故障将其移除,而较小的低度节点则更可能被移除。同时由于低度节点在连接巨型部件方面不重要,因此将其移除几乎没有多大影响。
无标度网络的针对性攻击
尽管无标度网络可以抵抗随机故障,但可以想象它对枢纽节点针对性的攻击其实非常脆弱。此时,我们就需要考虑无标度网络对目标攻击的鲁棒性,这需要在充分了解网络拓扑结构的前提下进行。通过研究删除枢纽节点时网络产生的变化,特别是最大程度与所连接节点的程度变化,我们就可以考虑到无标度网络上的针对性攻击,得出临界阈值的另一个公式:
[math]\displaystyle{
\begin{align}
f_c^{\frac{2-\gamma}{1-\gamma}}=2+\frac{2-\gamma}{3-\gamma}K_{min}(f_c^{\frac{3-\gamma}{1-\gamma}}-1)
\end{align}
}[/math]
该方程无法解析求解,但可以用数字表示。从中得出的结论是,当γ很大时,该网络可近似看作随机网络,其对抗攻击的鲁棒性变得类似于随机网络的随机故障鲁棒性。但是,当γ较小时,针对无标度网络攻击的临界阈值将变得相对较小,其抵抗定向攻击的脆弱性质逐渐显现出来。
有关复杂网络攻击耐受性的更多详细信息,请参阅攻击耐受性页面。
级联失效
许多网络中的故障的一个重要方面是,一个节点中的单个故障可能会导致相邻节点中的故障。当少量故障导致更多故障,导致相对于网络规模的大量故障时,就发生了级联故障。级联故障有很多模型。这些模型在许多细节上都不同,并且对从电源故障到Twitter上的信息流的不同物理传播现象进行建模,但是具有一些共享的原理。每个模型都专注于某种传播或级联,有一些阈值确定节点何时将发生故障或激活,并有助于传播,并且定义了某种机制,通过该机制,当节点发生故障或激活时将定向传播。所有这些模型都预测了某种临界状态,其中潜在级联的大小分布与幂律相匹配,并且指数由基础网络的度指数唯一确定。由于模型之间的差异以及结果的共识,我们认为潜在的现象是普遍的且与模型无关。
有关建级联故障的更多详细信息,请参阅全局级联模型页面。