重尾分布
此词条Jie翻译。已由Smile审校。
在概率论中,重尾分布 Heavy-tailed distributions是指其尾部呈现出不受指数限制的概率分布[1]:也就是说,它们的尾部比指数分布 exponential distribution “重”。在许多应用中,关注的是分布的右尾,但是分布的左尾可能也很重,或者两个尾都很重。
重尾分布有三个重要的子类:胖尾分布 Fat-tailed distribution,长尾分布 Long-tailed distribution和次指数分布 Subexponential distributions。实际上,所有常用的重尾分布都属于次指数分布类 subexponential class 。
在使用“重尾” Heavy-tailed一词时仍存在一些歧义。于是就出现了另外两种定义。一些作者使用该术语来指代并非所有幂矩都是有限的那些分布,以及其它一些没有有限方差的分布。本文中给出的是最常用的定义,包括替代定义所涵盖的所有分布,以及具有所有幂矩的对数正态分布 long-normal distributions ,但通常被认为是重尾的。(有时“重尾”用于任何具有比正态分布更重的尾巴的分布。)
定义
重尾分布的定义
The distribution of a random variable X with distribution function F is said to have a heavy (right) tail if the moment generating function of X, MX(t), is infinite for all t > 0.[2]
The distribution of a random variable X with distribution function F is said to have a heavy (right) tail if the moment generating function of X, MX(t), is infinite for all t > 0.
如果[math]\displaystyle{ X }[/math]的矩生成函数, MX(t)对于所有t > 0都是无限的,则具有分布函数F的随机变量X的分布被称为重尾(右)。[2]
That means
也就是说
- [math]\displaystyle{ \int_{-\infty}^\infty e^{t x} \,dF(x) = \infty \quad \mbox{for all } t\gt 0. }[/math]
An implication of this is that
这意味着
- [math]\displaystyle{ \lim_{x \to \infty} e^{t x}\Pr[X\gt x] = \infty \quad \mbox{for all } t\gt 0.\, }[/math]
This is also written in terms of the tail distribution function
也可以写成尾分布函数 the tail distribution function :
[math]\displaystyle{ \overline{F}(x) ≡ \Pr[X\gt x] }[/math]
as
- [math]\displaystyle{ \lim_{x \to \infty} e^{t x}\overline{F}(x) = \infty \quad \mbox{for all } t \gt 0.\, }[/math]
Definition of long-tailed distribution 长尾分布的定义
The distribution of a random variable X with distribution function F is said to have a long right tail if for all t > 0,
The distribution of a random variable X with distribution function F is said to have a long right tail[1] if for all t > 0,
如果对于所有t>0,则称具有分布函数F的随机变量X的分布为有较长的右尾,
- [math]\displaystyle{ \lim_{x \to \infty} \Pr[X\gt x+t\mid X\gt x] =1, \, }[/math]
or equivalently 或等同于
- [math]\displaystyle{ \overline{F}(x+t) \sim \overline{F}(x) \quad \mbox{as } x \to \infty. \, }[/math]
This has the intuitive interpretation for a right-tailed long-tailed distributed quantity that if the long-tailed quantity exceeds some high level, the probability approaches 1 that it will exceed any other higher level.
This has the intuitive interpretation for a right-tailed long-tailed distributed quantity that if the long-tailed quantity exceeds some high level, the probability approaches 1 that it will exceed any other higher level.
对于右尾长尾分布量具有直观的解释,即如果长尾量超过某个高水平,则概率将接近1,它将超过其他更高的水平。
All long-tailed distributions are heavy-tailed, but the converse is false, and it is possible to construct heavy-tailed distributions that are not long-tailed.
All long-tailed distributions are heavy-tailed, but the converse is false, and it is possible to construct heavy-tailed distributions that are not long-tailed.
所有长尾分布都是重尾分布,但反过来不一定成立,且可以构造出非长尾分布的重尾分布。
Subexponential distributions 次指数分布
Subexponentiality is defined in terms of convolutions of probability distributions. For two independent, identically distributed random variables [math]\displaystyle{ X_1,X_2 }[/math] with common distribution function [math]\displaystyle{ F }[/math] the convolution of [math]\displaystyle{ F }[/math] with itself, [math]\displaystyle{ F^{*2} }[/math] is convolution square, using Lebesgue–Stieltjes integration, by:
Subexponentiality is defined in terms of convolutions of probability distributions. For two independent, identically distributed random variables [math]\displaystyle{ X_1,X_2 }[/math] with common distribution function [math]\displaystyle{ F }[/math] the convolution of [math]\displaystyle{ F }[/math] with itself, [math]\displaystyle{ F^{*2} }[/math] is convolution square, using Lebesgue–Stieltjes integration, by:
次指数性是根据概率分布的卷积 Convolution 定义的。对于具有共同分布函数[math]\displaystyle{ F }[/math]的两个独立且分布均匀的随机变量[math]\displaystyle{ X_1,X_2 }[/math],[math]\displaystyle{ F }[/math]与自身的卷积,[math]\displaystyle{ F^{*2} }[/math]是卷积的平方,使用Lebesgue–Stieltjes积分,方法如下:
- [math]\displaystyle{ \Pr[X_1+X_2 \leq x] = F^{*2}(x) = \int_{0}^x F(x-y)\,dF(y), }[/math]
and the n-fold convolution [math]\displaystyle{ F^{*n} }[/math] is defined inductively by the rule:
n倍卷积[math]\displaystyle{ F^{*n} }[/math]定义如下:
- [math]\displaystyle{ F^{*n}(x) = \int_{0}^x F(x-y)\,dF^{*n-1}(y). }[/math]
The tail distribution function [math]\displaystyle{ \overline{F} }[/math] is defined as [math]\displaystyle{ \overline{F}(x) = 1-F(x) }[/math].
尾分布函数[math]\displaystyle{ \overline{F} }[/math]定义为[math]\displaystyle{ \overline{F}(x) = 1-F(x) }[/math]。
A distribution [math]\displaystyle{ F }[/math] on the positive half-line is subexponential[1][3][4] if
如果满足以下条件,则正半线上的分布[math]\displaystyle{ F }[/math]为次指数[1][5][6]
- [math]\displaystyle{ \overline{F^{*2}}(x) \sim 2\overline{F}(x) \quad \mbox{as } x \to \infty. }[/math]
This implies[7] that, for any [math]\displaystyle{ n \geq 1 }[/math],
这意味着[7],对于任何[math]\displaystyle{ n \geq 1 }[/math],
- [math]\displaystyle{ \overline{F^{*n}}(x) \sim n\overline{F}(x) \quad \mbox{as } x \to \infty. }[/math]
The probabilistic interpretation[7] of this is that, for a sum of [math]\displaystyle{ n }[/math] independent random variables [math]\displaystyle{ X_1,\ldots,X_n }[/math] with common distribution [math]\displaystyle{ F }[/math],
对此的概率解释[7]是,对于具有共同分布[math]\displaystyle{ F }[/math]的[math]\displaystyle{ n }[/math]个独立随机变量[math]\displaystyle{ X_1,\ldots,X_n }[/math]的总和
- [math]\displaystyle{ \Pr[X_1+ \cdots +X_n\gt x] \sim \Pr[\max(X_1, \ldots,X_n)\gt x] \quad \text{as } x \to \infty. }[/math]
This is often known as the principle of the single big jump[8] or catastrophe principle.[9]
这通常被称为单跳 single big jump[10]或突变理论 catastrophe principle [11]。
A distribution [math]\displaystyle{ F }[/math] on the whole real line is subexponential if the distribution [math]\displaystyle{ F I([0,\infty)) }[/math] is.[12] Here [math]\displaystyle{ I([0,\infty)) }[/math] is the indicator function of the positive half-line. Alternatively, a random variable [math]\displaystyle{ X }[/math] supported on the real line is subexponential if and only if [math]\displaystyle{ X^+ = \max(0,X) }[/math] is subexponential.
如果分布[math]\displaystyle{ F I([0,\infty))\lt /m4ath\gt 为实数,则\lt math\gt F }[/math]为整个实数上的次指数分布。[13]此时[math]\displaystyle{ I([0,\infty)) }[/math]是正半轴的指标函数。或者,当且仅当[math]\displaystyle{ X^+ = \max(0,X) }[/math]是次指数时,实数上支持的随机变量[math]\displaystyle{ X }[/math]才是次指数。
All subexponential distributions are long-tailed, but examples can be constructed of long-tailed distributions that are not subexponential.
所有次指数分布都是长尾分布,但可以构造出非次指数分布的长尾分布的示例。
Common heavy-tailed distributions 常见的重尾分布
All commonly used heavy-tailed distributions are subexponential.[7]
Those that are one-tailed include:
- the Pareto distribution;
- the Log-normal distribution;
- the Lévy distribution;
- the Weibull distribution with shape parameter greater than 0 but less than 1;
- the Burr distribution;
- the log-logistic distribution;
- the log-gamma distribution;
- the Fréchet distribution;
- the log-Cauchy distribution, sometimes described as having a "super-heavy tail" because it exhibits logarithmic decay producing a heavier tail than the Pareto distribution.[14][15]
Those that are two-tailed include:
- The Cauchy distribution, itself a special case of both the stable distribution and the t-distribution;
- The family of stable distributions,[16] excepting the special case of the normal distribution within that family. Some stable distributions are one-sided (or supported by a half-line), see e.g. Lévy distribution. See also financial models with long-tailed distributions and volatility clustering.
- The t-distribution.
- The skew lognormal cascade distribution.[17]
All commonly used heavy-tailed distributions are subexponential.[6]
所有常用的重尾分布都是次指数的。[7]
Those that are one-tailed include: 单尾的包括:
- 帕累托分布 Pareto distribution;
- 对数正态分布 Log-normal distribution;
- 莱维分布 Lévy distribution;
- 形状参数大于0但小于1的韦布尔分布 Weibull distribution;
- 伯尔分布 Burr distribution;
- 对数逻辑分布 log-logistic distribution;
- 对数伽玛分布 log-gamma distribution;
- 弗雷歇分布 Fréchet distribution;
- 对数柯西分布 log-Cauchy distribution,有时被描述为“超重尾”分布,因为它表现出对数衰减,从而产生比帕累托分布更重的尾。[18][19]
Those that are two-tailed include: 双尾的包括:
- 柯西分布 Cauchy distribution本身就是稳定分布和t分布的特例;
- 稳定分布族 The family of stable distributions[20],但该族中正态分布的特殊情况除外。一些稳定的分布是单面的(或有半线的支持),例如莱维分布。另请参见具有长尾分布和波动性聚类的财务模型。
- t分布
- 偏对数正态级联分布 The skew lognormal cascade distribution。[21]
Relationship to fat-tailed distributions 与胖尾分布的关系
A fat-tailed distribution is a distribution for which the probability density function, for large x, goes to zero as a power [math]\displaystyle{ x^{-a} }[/math]. Since such a power is always bounded below by the probability density function of an exponential distribution, fat-tailed distributions are always heavy-tailed. Some distributions, however, have a tail which goes to zero slower than an exponential function (meaning they are heavy-tailed), but faster than a power (meaning they are not fat-tailed). An example is the log-normal distribution [22]. Many other heavy-tailed distributions such as the log-logistic and Pareto distribution are, however, also fat-tailed.
胖尾分布是这样的分布,对于较大的x,概率密度函数为[math]\displaystyle{ x^{-a} }[/math]趋于零。由于这样的幂总是受到指数分布概率密度函数的限制,因此,胖尾分布始终是重尾分布。但是,某些分布的尾部趋近于零的速率比指数函数慢(表示它们是重尾),而比幂快(表示它们不是胖尾)。例如对数正态分布[23]。当然,许多其他的重尾分布,例如对数逻辑分布和帕累托分布也属于胖尾分布。
Estimating the tail-index模板:Definition 尾指数估计
There are parametric (see Embrechts et al.[7]) and non-parametric (see, e.g., Novak[24]) approaches to the problem of the tail-index estimation.
对于尾指数估计的问题,有参数方法(参见Emprechts等人[7])和非参数方法(例如,Novak[24])两种。
To estimate the tail-index using the parametric approach, some authors employ GEV distribution or Pareto distribution; they may apply the maximum-likelihood estimator (MLE).
为了使用参数化方法估计尾指数,有些作者采用了GEV分布或帕累托分布;他们可能会运用极大似然估计方法(MLE)。
Pickand's tail-index estimator Pickand的尾指数估算器
With [math]\displaystyle{ (X_n , n \geq 1) }[/math] a random sequence of independent and same density function [math]\displaystyle{ F \in D(H(\xi)) }[/math], the Maximum Attraction Domain[25] of the generalized extreme value density [math]\displaystyle{ H }[/math], where [math]\displaystyle{ \xi \in \mathbb{R} }[/math]. If [math]\displaystyle{ \lim_{n\to\infty} k(n) = \infty }[/math] and [math]\displaystyle{ \lim_{n\to\infty} \frac{k(n)}{n}= 0 }[/math], then the Pickands tail-index estimation is[7][25]
对于[math]\displaystyle{ (X_n , n \geq 1) }[/math]的独立且相同的密度函数[math]\displaystyle{ F \in D(H(\xi)) }[/math]的随机序列,是广义极值密度 the generalized extreme value density [math]\displaystyle{ H }[/math]的最大吸引域 the Maximum Attraction Domain [25],其中[math]\displaystyle{ \xi \in \mathbb{R} }[/math]。如果[math]\displaystyle{ \lim_{n\to\infty} k(n) = \infty }[/math]和[math]\displaystyle{ \lim_{n\to\infty} \frac{k(n)}{n}= 0 }[/math],则Pickands尾部指数估计为[7][25]
- [math]\displaystyle{ \xi^\text{Pickands}_{(k(n),n)} =\frac{1}{\ln 2} \ln \left( \frac{X_{(n-k(n)+1,n)} - X_{(n-2k(n)+1,n)}}{X_{(n-2k(n)+1,n)} - X_{(n-4k(n)+1,n)}}\right) }[/math]
where [math]\displaystyle{ X_{(n-k(n)+1,n)}=\max \left(X_{n-k(n)+1},\ldots ,X_{n}\right) }[/math]. This estimator converges in probability to [math]\displaystyle{ \xi }[/math].
其中[math]\displaystyle{ X_{(n-k(n)+1,n)}=\max \left(X_{n-k(n)+1},\ldots ,X_{n}\right) }[/math]。 此估计量的概率收敛到[math]\displaystyle{ \xi }[/math]。
Hill's tail-index estimator 希尔 Hill的尾指数估算器
Let [math]\displaystyle{ (X_t , t \geq 1) }[/math] be a sequence of independent and identically distributed random variables with distribution function [math]\displaystyle{ F \in D(H(\xi)) }[/math], the maximum domain of attraction of the generalized extreme value distribution [math]\displaystyle{ H }[/math], where [math]\displaystyle{ \xi \in \mathbb{R} }[/math]. The sample path is [math]\displaystyle{ {X_t: 1 \leq t \leq n} }[/math] where [math]\displaystyle{ n }[/math] is the sample size. If [math]\displaystyle{ \{k(n)\} }[/math] is an intermediate order sequence, i.e. [math]\displaystyle{ k(n) \in \{1,\ldots,n-1\}, }[/math], [math]\displaystyle{ k(n) \to \infty }[/math] and [math]\displaystyle{ k(n)/n \to 0 }[/math], then the Hill tail-index estimator is[26]
令[math]\displaystyle{ (X_t , t \geq 1) }[/math]为具有分布函数[math]\displaystyle{ F \in D(H(\xi)) }[/math]独立且均匀分布的随机变量序列,其分布函数为广义极值分布[math]\displaystyle{ H }[/math]的最大吸引域,其中[math]\displaystyle{ \xi \in \mathbb{R} }[/math]。样本路径为[math]\displaystyle{ {X_t: 1 \leq t \leq n} }[/math],其中[math]\displaystyle{ n }[/math]为样本大小。 如果[math]\displaystyle{ \{k(n)\} }[/math]是中间阶数序列,即[math]\displaystyle{ k(n) \in \{1,\ldots,n-1\}, }[/math],[math]\displaystyle{ k(n) \to \infty }[/math]和[math]\displaystyle{ k(n)/n \to 0 }[/math],则Hill尾指数估计器为[27]:
- [math]\displaystyle{ \xi^\text{Hill}_{(k(n),n)} = \left(\frac 1 {k(n)} \sum_{i=n-k(n)+1}^n \ln(X_{(i,n)}) - \ln (X_{(n-k(n)+1,n)})\right)^{-1}, }[/math]
where [math]\displaystyle{ X_{(i,n)} }[/math] is the [math]\displaystyle{ i }[/math]-th order statistic of [math]\displaystyle{ X_1, \dots, X_n }[/math].
This estimator converges in probability to [math]\displaystyle{ \xi }[/math], and is asymptotically normal provided [math]\displaystyle{ k(n) \to \infty }[/math] is restricted based on a higher order regular variation property[28]
.[29] Consistency and asymptotic normality extend to a large class of dependent and heterogeneous sequences,[30][31] irrespective of whether [math]\displaystyle{ X_t }[/math] is observed, or a computed residual or filtered data from a large class of models and estimators, including mis-specified models and models with errors that are dependent.[32][33][34]
其中[math]\displaystyle{ X_{(i,n)} }[/math]是[math]\displaystyle{ X_1, \dots, X_n }[/math]的第[math]\displaystyle{ i }[/math]次序统计量。该估计量依概率收敛于[math]\displaystyle{ \xi }[/math],并且在基于高阶的正则变化性质的情况下,是限制[math]\displaystyle{ k(n) \to \infty }[/math]的渐近正态[35].[36]。一致性和渐近正态性适用于一大类相关序列和异类序列[37][38],而不管是否观测到[math]\displaystyle{ X_t }[/math],或者来自大量模型和估计量(包括错误指定的模型和具有相关误差的模型)计算出的残差或筛选数据。[39][40][41]
Ratio estimator of the tail-index 尾部指数的比率估计器
The ratio estimator (RE-estimator) of the tail-index was introduced by Goldie and Smith.[42] It is constructed similarly to Hill's estimator but uses a non-random "tuning parameter".
尾指数的比率估计器(RE估计器)由Goldie和Smith提出[43]。它的构造类似于Hill估计器,但使用了非随机的“调整参数”
A comparison of Hill-type and RE-type estimators can be found in Novak.[24]
在Novak中可以找到Hill型和RE型估计量的比较。[24]
Software 应用软件
Estimation of heavy-tailed density 重尾密度的估计
Nonparametric approaches to estimate heavy- and superheavy-tailed probability density functions were given in Markovich.[46] These are approaches based on variable bandwidth and long-tailed kernel estimators; on the preliminary data transform to a new random variable at finite or infinite intervals which is more convenient for the estimation and then inverse transform of the obtained density estimate; and "piecing-together approach" which provides a certain parametric model for the tail of the density and a non-parametric model to approximate the mode of the density. Nonparametric estimators require an appropriate selection of tuning (smoothing) parameters like a bandwidth of kernel estimators and the bin width of the histogram. The well known data-driven methods of such selection are a cross-validation and its modifications, methods based on the minimization of the mean squared error (MSE) and its asymptotic and their upper bounds.[47] A discrepancy method which uses well-known nonparametric statistics like Kolmogorov-Smirnov's, von Mises and Anderson-Darling's ones as a metric in the space of distribution functions (dfs) and quantiles of the later statistics as a known uncertainty or a discrepancy value can be found in.[46] Bootstrap is another tool to find smoothing parameters using approximations of unknown MSE by different schemes of re-samples selection, see e.g.[48]
Markovich中给出了估计重尾和超重尾概率密度函数的非参数方法。[46]这些是基于可变带宽 variable bandwidth和长尾核估计器 long-tailed kernel estimators的方法。将初步数据以有限或无限间隔变换为新的随机变量,这样更便于估计,然后对获得的密度估计进行逆变换;以及“拼合方法”,它为密度的尾部提供了确定的参数模型,并为近似密度模型提供了非参数模型。非参数估计器需要适当选择调整(平滑)参数,例如内核估计器的带宽和直方图的组距。这种选择大众化数据驱动方法是基于均方误差(MSE)及其渐近或上限的最小化的交叉验证及修改方法。[47]可以找到一种差异方法,通过使用著名的非参数统计数据(例如Kolmogorov-Smirnov's,von Mises和Anderson-Darling的统计量)作为分布函数(dfs)空间中的度量,并将后来的统计量的分位数作为已知的不确定性或差异值。[46]自助法 Bootstrap是另一种工具,可以通过不同的重抽样方案使用未知MSE的近似值来查找平滑参数。[48]
See also 其他参考资料
- Leptokurtic distribution
- Generalized extreme value distribution
- Outlier
- Long tail
- Power law
- Seven states of randomness
- Fat-tailed distribution
- 尖峭态分布 Leptokurtic distribution
- 广义极值分布 Generalized extreme value distribution
- 离群值 Outlier
- 长尾 Long tail
- 幂律 Power law
- 随机的七个状态 Seven states of randomness
- 胖尾分布 Fat-tailed distribution
- 塔勒布分布 Taleb distribution和圣杯分布 Holy grail distribution
References 参考文献
- ↑ 1.0 1.1 1.2 Asmussen, S. R. (2003). "Steady-State Properties of GI/G/1". Applied Probability and Queues. Stochastic Modelling and Applied Probability. 51. pp. 266–301. doi:10.1007/0-387-21525-5_10. ISBN 978-0-387-00211-8.
- ↑ 2.0 2.1 Rolski, Schmidli, Scmidt, Teugels, Stochastic Processes for Insurance and Finance, 1999
- ↑ Chistyakov, V. P. (1964). "A Theorem on Sums of Independent Positive Random Variables and Its Applications to Branching Random Processes". ResearchGate (in English). Retrieved April 7, 2019.
- ↑ Teugels, Jozef L. (1975). "The Class of Subexponential Distributions". University of Louvain: Annals of Probability. Retrieved April 7, 2019.
- ↑ Chistyakov, V. P. (1964). "A Theorem on Sums of Independent Positive Random Variables and Its Applications to Branching Random Processes". ResearchGate (in English). Retrieved April 7, 2019.
- ↑ Teugels, Jozef L. (1975). "The Class of Subexponential Distributions". University of Louvain: Annals of Probability. Retrieved April 7, 2019.
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 Embrechts P.; Klueppelberg C.; Mikosch T. (1997). Modelling extremal events for insurance and finance. Stochastic Modelling and Applied Probability. 33. Berlin: Springer. doi:10.1007/978-3-642-33483-2. ISBN 978-3-642-08242-9.
- ↑ Foss, S.; Konstantopoulos, T.; Zachary, S. (2007). "Discrete and Continuous Time Modulated Random Walks with Heavy-Tailed Increments" (PDF). Journal of Theoretical Probability. 20 (3): 581. arXiv:math/0509605. CiteSeerX 10.1.1.210.1699. doi:10.1007/s10959-007-0081-2.
- ↑ Wierman, Adam (January 9, 2014). "Catastrophes, Conspiracies, and Subexponential Distributions (Part III)". Rigor + Relevance blog. RSRG, Caltech. Retrieved January 9, 2014.
- ↑ Foss, S.; Konstantopoulos, T.; Zachary, S. (2007). "Discrete and Continuous Time Modulated Random Walks with Heavy-Tailed Increments" (PDF). Journal of Theoretical Probability. 20 (3): 581. arXiv:math/0509605. CiteSeerX 10.1.1.210.1699. doi:10.1007/s10959-007-0081-2.
- ↑ Wierman, Adam (January 9, 2014). "Catastrophes, Conspiracies, and Subexponential Distributions (Part III)". Rigor + Relevance blog. RSRG, Caltech. Retrieved January 9, 2014.
- ↑ Willekens, E. (1986). "Subexponentiality on the real line". Technical Report. K.U. Leuven.
- ↑ Willekens, E. (1986). "Subexponentiality on the real line". Technical Report. K.U. Leuven.
- ↑ Falk, M., Hüsler, J. & Reiss, R. (2010). Laws of Small Numbers: Extremes and Rare Events. Springer. p. 80. ISBN 978-3-0348-0008-2.
- ↑ Alves, M.I.F., de Haan, L. & Neves, C. (March 10, 2006). "Statistical inference for heavy and super-heavy tailed distributions" (PDF). Archived from the original (PDF) on June 23, 2007. Retrieved November 1, 2011.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ↑ John P. Nolan (2009). "Stable Distributions: Models for Heavy Tailed Data" (PDF). Retrieved 2009-02-21.
- ↑ Stephen Lihn (2009). "Skew Lognormal Cascade Distribution". Archived from the original on 2014-04-07. Retrieved 2009-06-12.
- ↑ Falk, M., Hüsler, J. & Reiss, R. (2010). Laws of Small Numbers: Extremes and Rare Events. Springer. p. 80. ISBN 978-3-0348-0008-2.
- ↑ Alves, M.I.F., de Haan, L. & Neves, C. (March 10, 2006). "Statistical inference for heavy and super-heavy tailed distributions" (PDF). Archived from the original (PDF) on June 23, 2007. Retrieved November 1, 2011.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ↑ John P. Nolan (2009). "Stable Distributions: Models for Heavy Tailed Data" (PDF). Retrieved 2009-02-21.
- ↑ Stephen Lihn (2009). "Skew Lognormal Cascade Distribution". Archived from the original on 2014-04-07. Retrieved 2009-06-12.
- ↑ 模板:Contradict-inline
- ↑ 模板:Contradict-inline
- ↑ 24.0 24.1 24.2 24.3 Novak S.Y. (2011). Extreme value methods with applications to finance. London: CRC. ISBN 978-1-43983-574-6.
- ↑ 25.0 25.1 25.2 25.3 Pickands III, James (Jan 1975). "Statistical Inference Using Extreme Order Statistics". The Annals of Statistics. 3 (1): 119–131. doi:10.1214/aos/1176343003. JSTOR 2958083.
- ↑ Hill B.M. (1975) A simple general approach to inference about the tail of a distribution. Ann. Stat., v. 3, 1163–1174.
- ↑ Hill B.M. (1975) A simple general approach to inference about the tail of a distribution. Ann. Stat., v. 3, 1163–1174.
- ↑ Hall, P.(1982) On some estimates of an exponent of regular variation. J. R. Stat. Soc. Ser. B., v. 44, 37–42.
- ↑ Haeusler, E. and J. L. Teugels (1985) On asymptotic normality of Hill's estimator for the exponent of regular variation. Ann. Stat., v. 13, 743–756.
- ↑ Hsing, T. (1991) On tail index estimation using dependent data. Ann. Stat., v. 19, 1547–1569.
- ↑ Hill, J. (2010) On tail index estimation for dependent, heterogeneous data. Econometric Th., v. 26, 1398–1436.
- ↑ Resnick, S. and Starica, C. (1997). Asymptotic behavior of Hill’s estimator for autoregressive data. Comm. Statist. Stochastic Models 13, 703–721.
- ↑ Ling, S. and Peng, L. (2004). Hill’s estimator for the tail index of an ARMA model. J. Statist. Plann. Inference 123, 279–293.
- ↑ Hill, J. B. (2015). Tail index estimation for a filtered dependent time series. Stat. Sin. 25, 609–630.
- ↑ Hall, P.(1982) On some estimates of an exponent of regular variation. J. R. Stat. Soc. Ser. B., v. 44, 37–42.
- ↑ Haeusler, E. and J. L. Teugels (1985) On asymptotic normality of Hill's estimator for the exponent of regular variation. Ann. Stat., v. 13, 743–756.
- ↑ Hsing, T. (1991) On tail index estimation using dependent data. Ann. Stat., v. 19, 1547–1569.
- ↑ Hill, J. (2010) On tail index estimation for dependent, heterogeneous data. Econometric Th., v. 26, 1398–1436.
- ↑ Resnick, S. and Starica, C. (1997). Asymptotic behavior of Hill’s estimator for autoregressive data. Comm. Statist. Stochastic Models 13, 703–721.
- ↑ Ling, S. and Peng, L. (2004). Hill’s estimator for the tail index of an ARMA model. J. Statist. Plann. Inference 123, 279–293.
- ↑ Hill, J. B. (2015). Tail index estimation for a filtered dependent time series. Stat. Sin. 25, 609–630.
- ↑ Goldie C.M., Smith R.L. (1987) Slow variation with remainder: theory and applications. Quart. J. Math. Oxford, v. 38, 45–71.
- ↑ Goldie C.M., Smith R.L. (1987) Slow variation with remainder: theory and applications. Quart. J. Math. Oxford, v. 38, 45–71.
- ↑ Crovella, M. E.; Taqqu, M. S. (1999). "Estimating the Heavy Tail Index from Scaling Properties". Methodology and Computing in Applied Probability. 1: 55–79. doi:10.1023/A:1010012224103.
- ↑ Crovella, M. E.; Taqqu, M. S. (1999). "Estimating the Heavy Tail Index from Scaling Properties". Methodology and Computing in Applied Probability. 1: 55–79. doi:10.1023/A:1010012224103.
- ↑ 46.0 46.1 46.2 46.3 Markovich N.M. (2007). Nonparametric Analysis of Univariate Heavy-Tailed data: Research and Practice. Chitester: Wiley. ISBN 978-0-470-72359-3.
- ↑ 47.0 47.1 Wand M.P., Jones M.C. (1995). Kernel smoothing. New York: Chapman and Hall. ISBN 978-0412552700.
- ↑ 48.0 48.1 Hall P. (1992). The Bootstrap and Edgeworth Expansion. Springer. ISBN 9780387945088.
Category:Tails of probability distributions
类别: 概率分布的尾部
- the Burr distribution;
Category:Types of probability distributions
类别: 概率分布的类型
Category:Actuarial science
类别: 精算
Category:Risk
类别: 风险
This page was moved from wikipedia:en:Heavy-tailed distribution. Its edit history can be viewed at 重尾分布/edithistory