罗伯特罗森

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
唐糖糖讨论 | 贡献2022年1月21日 (五) 20:15的版本
跳到导航 跳到搜索


模板:Use mdy dates

Robert Rosen
Born(1934-模板:MONTHNUMBER-27)27, 1934
DiedDecember 28, 1998(1998-12-28) (aged 64)
Alma materUniversity of Chicago
Scientific career
FieldsMathematical biology, Quantum genetics, Biophysics
InstitutionsState University of New York at Buffalo
Dalhousie University
Academic advisorsNicolas Rashevsky
Notes

Robert Rosen (June 27, 1934 – December 28, 1998) was an American theoretical biologist and Professor of Biophysics at Dalhousie University.[1]


【最终篇】罗伯特·罗森(1934年6月27日- 1998年12月28日)是美国达尔豪斯大学的理论生物学家和生物物理学教授。


职业

【最终篇】1934年6月27日,罗伯特罗森出生于纽约市布朗斯维尔(布朗斯维尔位于布鲁克林)。他学习了生物、数学、物理、哲学和历史;尤其是科学史。1959年,在芝加哥大学尼古拉斯·拉舍夫斯基教授的指导下,他获得了关系生物学博士学位,这是一个更广泛的数学生物学领域的专业。他在芝加哥大学一直待到1964年,写了《罗伯特罗森自传回忆录》。后来在布法罗的布法罗大学(现为纽约州立大学的一部分)担任副教授,同时在理论生物学中心担任联合职务。


【最终篇】1970年,他作为加州圣巴巴拉市罗伯特·哈金斯民主制度研究中心的访问学者休假一年,这是开创性的,导致了他后来称之为预期系统理论的概念和发展,这一理论本身是他在关系复杂性方面的更大理论工作的必然结果。1975年,他离开纽约州立大学布法罗分校,进入加拿大新斯科舍省哈利法克斯的达尔豪西大学,担任生理学和生物物理学系的基拉姆研究教授,直到1994年提前退休。[2]他身后留下了妻子、女儿朱迪思·罗森(Judith Rosen)和两个儿子。


【最终篇】1980-1981年,他曾担任通用系统研究学会(现在称为国际系统科学学会(ISSS))主席。

研究

【最终篇】罗伯特罗森的研究涉及生物学最基本的方面,特别是“什么是生命?”和“生物为什么是活着的?”他作品中的几个主要主题是:

·基于自主生命体的范畴理论模型,提出了复杂的具体定义

·从关系生物学和量子遗传学的角度发展复杂系统生物学

·将生命体作为“预期系统”建立严格的理论基础


【最终篇】罗伯特罗森认为,当代的物理模型是建立在笛卡尔和牛顿形式主义的基础上的,适用于描述一个充满机制的世界,不足以解释或描述生物系统的行为。罗伯特罗森认为,“什么是生命?”这个基本问题不能从简化论的科学基础中得到充分的解决。用还原论的科学方法和实践来研究有机体,牺牲了生命系统的功能组织,以研究其部分。据罗伯特罗森说,一旦生物组织被摧毁,整个生物体就无法被重新捕获。罗伯特罗森提出了一个研究生物组织的坚实的理论基础,他认为,生物学不仅仅是已知物理学的一个子集,它可能会为物理学和一般科学提供深刻的教训。[3]


【最终篇】罗伯特罗森的工作结合了复杂的数学和潜在的激进的关于生命系统和科学本质的新观点。他被称为“生物学的牛顿”[4]。基于集合理论,他的工作也被认为是有争议的,人们担心他使用的一些数学方法可能缺乏足够的证据。罗伯特罗森的遗作《生命本身》(2000)[5][6]以及最近由罗伯特罗森的学生Aloisius Louie撰写的专著阐明并解释了罗伯特罗森作品中的数学内容。


关系生物学

【最终篇】罗伯特罗森的工作提出了一种需要发展的方法论,除了目前分子生物学家对科学的简化方法之外。他称这种方法为关系生物学。关系是他的导师尼古拉斯·拉舍夫斯基(Nicolas Rashevsky)使用的一个术语,在罗伯特罗森第一次报告这个课题之前,拉舍夫斯基发表了几篇关于集合理论关系在生物学中的重要性的论文。[7]罗伯特罗森对生物学的关系方法是对尼古拉斯 · 拉舍夫斯基(Nicolas Rashevsky)的n元关系处理的扩展和放大,他在20多年的时间里发展出了生物和社会“有机体”的代表。


【最终篇】罗伯特罗森的关系生物学认为,有机体,甚至所有的系统,都有一种被称为组织的独特属性,这种属性不是还原论语言的一部分,例如分子生物学,尽管它在系统生物学中被越来越多地使用。它不仅仅涉及到结构或材料方面。例如,组织包括所有材料部件之间的关系,材料部件相互作用的影响之间的关系,与时间和环境的关系等等。[8]许多人将复杂系统的这一方面总结为“整体大于部分之和”。在某种意义上,部件之间的关系和交互效果之间的关系必须被视为附加的“关系”部件。


【最终篇】罗森说,组织必须独立于看似构成生命系统的物质粒子。正如他所说[9]:


【最终篇】罗森的抽象关系生物学方法关注于对生物体和所有复杂系统的定义,就其内部组织而言,它们是开放的系统,不能被简化为它们相互作用的组成部分,因为控制有机体复杂生物动力学的代谢、复制和修复组件之间是一种多重复杂关系。


【最终篇】他有意地选择“最简单的”图和类别来表示只赋予离散集合的“有效”拓扑小类别集合中的代谢-修复系统,并且设想这种选择是最一般和限制较少的。然而,事实证明 (M{,}R)系统的有效衍生是“有效因果闭合的”。唐纳德·c·米库勒基·罗伯特·罗森: 这是一个恰当的问题及其答案——为什么有机体不同于机器?或者用简单的术语来说,新陈代谢的催化剂(新陈代谢的“有效原因”,[10]通常被认为是酶)本身就是新陈代谢的产物,因此,从严格的数学意义上来说,可能不会被认为是连续机器或自动机范畴的子范畴: 这与法国哲学家笛卡尔的假设直接矛盾,即所有的动物都只是复杂的机器或机制。罗森说:“我认为,解决这些问题(主体-客体边界和什么构成客观性)的唯一办法是承认因果关系的闭环是‘客观的’;即科学审查的合法对象。任何机器论或机械论都明确禁止这些操作。”[11]罗森关于“有效闭合”的论证,是为了在机械论科学中提出这样一个明确的悖论: 一方面,生物体是由这种因果闭合定义的,另一方面,机制又禁止它们; 因此,我们需要修正我们对自然的理解。这种机械论的观点甚至在今天的大多数普通生物学和大多数科学中依然盛行,尽管有些人声称社会学和心理学中的还原论方法已经失败,并且自20世纪70年代初以来已经失宠。然而,这些领域尚未就新观点应该是什么达成共识,大多数其他学科也是如此,这些学科努力保留生命和复杂系统的”机器隐喻”的各个方面。


复杂性和复杂科学模型系统

【最终篇】澄清简单科学模型和复杂科学模型之间的区别成为罗森后来发表报告的主要目标。罗森认为建模是科学和思想的本质。他的著作《预防系统》[12]详细描述了他所说的建模关系。他展示了真实的建模关系和仿真之间的深刻区别,后者不是基于这样的建模关系。

In mathematical biology he is known as the originator of a class of relational models of living organisms, called [math]\displaystyle{ (M{,}R) }[/math]systems that he devised to capture the minimal capabilities that a material system would need in order to be one of the simplest functional organisms that are commonly said to be "alive". In this kind of system, [math]\displaystyle{ M }[/math] stands for the metabolic and [math]\displaystyle{ R }[/math] stands for the 'repair' subsystems of a simple organism, for example active 'repair' RNA molecules. Thus, his mode for determining or "defining" life in any given system is a functional, not material, mode; although he did consider in his 1970s published reports specific dynamic realizations of the simplest [math]\displaystyle{ (M{,}R) }[/math]systems in terms of enzymes ([math]\displaystyle{ M }[/math]), RNA ([math]\displaystyle{ R }[/math]), and functional, duplicating DNA (his [math]\displaystyle{ \beta }[/math]-mapping).

In mathematical biology he is known as the originator of a class of relational models of living organisms, called (M{,}R)systems that he devised to capture the minimal capabilities that a material system would need in order to be one of the simplest functional organisms that are commonly said to be "alive". In this kind of system, M stands for the metabolic and R stands for the 'repair' subsystems of a simple organism, for example active 'repair' RNA molecules. Thus, his mode for determining or "defining" life in any given system is a functional, not material, mode; although he did consider in his 1970s published reports specific dynamic realizations of the simplest (M{,}R)systems in terms of enzymes (M), RNA (R), and functional, duplicating DNA (his \beta-mapping).

在数学生物学中,他被认为是一类生物有机体关系模型的创始人,这类关系模型被称为 (M{,}R)系统,他设计这类系统是为了捕捉物质系统成为通常被称为“活的”的最简单的功能有机体所需要的最低能力。在这种系统中,m 代表新陈代谢,r 代表简单有机体的修复子系统,例如活跃的修复 RNA 分子。因此,他在任何给定系统中确定或“定义”生命的模式是功能性的,而不是物质性的; 尽管他在20世纪70年代发表的报告中考虑了最简单 (M{,}R)系统在酶(m)、 RNA (r)和功能性复制 DNA (他的β模型)方面的具体动态实现。

【最终篇】在数学生物学中,他被认为是一类生物有机体关系模型的创始人,这类关系模型被称为 (M{,}R)系统,他设计这类系统是为了捕捉物质系统成为通常被称为“活的”的最简单的功能有机体所需要的最低能力。在这种系统中,M代表新陈代谢,R代表简单生物体的“修复”子系统,例如活性的“修复”RNA分子。因此,他在任何给定系统中决定或“定义”生命的模式是一种功能模式,而不是物质模式;尽管他在20世纪70年代发表的报告中考虑了最简单的(M{,}R)系统在酶(M)、RNA (R)和功能复制DNA(他的beta图谱)方面的具体动态实现。

He went, however, even further in this direction by claiming that when studying a complex system, one "can throw away the matter and study the organization" to learn those things that are essential to defining in general an entire class of systems. This has been, however, taken too literally by a few of his former students who have not completely assimilated Robert Rosen's injunction of the need for a theory of dynamic realizations of such abstract components in specific molecular form in order to close the modeling loop 模板:Clarify for the simplest functional organisms (such as, for example, single-cell algae or microorganisms).[13] He supported this claim (that he actually attributed to Nicolas Rashevsky) based on the fact that living organisms are a class of systems with an extremely wide range of material "ingredients", different structures, different habitats, different modes of living and reproduction, and yet we are somehow able to recognize them all as living, or functional organisms, without being however vitalists.

He went, however, even further in this direction by claiming that when studying a complex system, one "can throw away the matter and study the organization" to learn those things that are essential to defining in general an entire class of systems. This has been, however, taken too literally by a few of his former students who have not completely assimilated Robert Rosen's injunction of the need for a theory of dynamic realizations of such abstract components in specific molecular form in order to close the modeling loop for the simplest functional organisms (such as, for example, single-cell algae or microorganisms).Robert Rosen. 1970. Dynamical Systems Theory in Biology, New York: Wiley Interscience. He supported this claim (that he actually attributed to Nicolas Rashevsky) based on the fact that living organisms are a class of systems with an extremely wide range of material "ingredients", different structures, different habitats, different modes of living and reproduction, and yet we are somehow able to recognize them all as living, or functional organisms, without being however vitalists.

然而,他在这个方向上走得更远,声称在研究一个复杂系统时,人们“可以抛开物质并且只研究组织”,去学习那些对于一般地定义一整类系统至关重要的东西。然而,罗伯特 · 罗森以前的一些学生对此过于字面化,他们没有完全吸收罗伯特 · 罗森的观点,即需要一种动态实现特定分子形式的抽象组分的理论,以便为最简单的功能有机体(例如单细胞藻类或微生物)闭合建模循环。罗伯特·罗森.1970.生物学的动力系统理论,纽约:威利交叉科学。他支持这种说法(他实际上将其归因于尼古拉斯 · 拉舍夫斯基) ,因为生命有机体是一类系统,具有极其广泛的物质“成分”、不同的结构、不同的栖息地、不同的生存和繁殖方式,然而我们却能够以某种方式将它们全部识别为活的或功能性的有机体,而不管它们多么有生命力。

【最终篇】然而,他在这个方向上更进一步,声称当研究一个复杂的系统时,人们“可以抛开物质并且只研究组织”来学习那些对定义整个系统类至关重要的东西。然而,罗伯特罗森以前的一些学生对此过于字面化,他们没有完全吸收罗伯特罗森的观点,即需要一种动态实现特定分子形式的抽象组分的理论,以便为最简单的功能有机体(例如单细胞藻类或微生物)闭合建模循环。罗伯罗森,1970。生物学的动力系统理论,纽约:威利交叉科学。他支持这一说法(实际上他归因于尼古拉斯·拉舍夫斯基),因为生命有机体是一类系统,具有极其广泛的物质“成分”、不同的结构、不同的栖息地、不同的生存和繁殖方式,然而我们却能够以某种方式将它们全部识别为活的或功能性的有机体,而不管它们多么有生命力。

His approach, just like Rashevsky's latest theories of organismic sets,[14][15] emphasizes biological organization over molecular structure in an attempt to bypass the structure-functionality relationships that are important to all experimental biologists, including physiologists. In contrast, a study of the specific material details of any given organism, or even of a type of organisms, will only tell us about how that type of organism "does it". Such a study doesn't approach what is common to all functional organisms, i.e. "life". Relational approaches to theoretical biology would therefore allow us to study organisms in ways that preserve those essential qualities that we are trying to learn about, and that are common only to functional organisms.

His approach, just like Rashevsky's latest theories of organismic sets, emphasizes biological organization over molecular structure in an attempt to bypass the structure-functionality relationships that are important to all experimental biologists, including physiologists. In contrast, a study of the specific material details of any given organism, or even of a type of organisms, will only tell us about how that type of organism "does it". Such a study doesn't approach what is common to all functional organisms, i.e. "life". Relational approaches to theoretical biology would therefore allow us to study organisms in ways that preserve those essential qualities that we are trying to learn about, and that are common only to functional organisms.

他的方法,就像Rashevsky最新的有机体集合理论一样,强调生物组织而不是分子结构,试图绕过对所有实验生物学家(包括生理学家)都很重要的结构-功能关系。相比之下,对任何特定生物体,甚至某种生物体的具体物质细节的研究,只能告诉我们这种生物体是如何“做到这一点”的。这样的一项研究并没有涉及到所有功能性生物体的共同特征,即。“生活”。因此,与理论生物学相关的方法将使我们能够以一种方式来研究生物,这种方式能够保持我们试图了解的、只有功能性生物才具有的那些基本特性。

【最终篇】他的方法,就像拉舍夫斯基(Rashevsky)最新的有机组合理论一样,强调生物组织多于分子结构,试图绕过对包括生理学家在内的所有实验生物学家都很重要的结构-功能关系。相比之下,对任何特定有机体,甚至是某种有机体的特定物质细节的研究,只会告诉我们这种有机体是如何“做到这一点的”。这样的一项研究并没有涉及到所有功能性生物体的共同特征,即“生命”。因此,与理论生物学相关的方法将使我们能够以这种方式来研究生物,这种方式能够保持我们试图了解的、只有功能性生物才具有的那些基本特性。

Robert Rosen's approach belongs conceptually to what is now known as Functional Biology, as well as Complex Systems Biology, albeit in a highly abstract, mathematical form.

Robert Rosen's approach belongs conceptually to what is now known as Functional Biology, as well as Complex Systems Biology, albeit in a highly abstract, mathematical form.

罗伯特 · 罗森的方法在概念上属于现在已知的功能生物学,以及复杂系统生物学,尽管是以一种高度抽象的数学形式。

【最终篇】罗伯特罗森的方法在概念上属于现在所知的功能生物学,以及复杂系统生物学,尽管是一种高度抽象的数学形式。

Quantum Biochemistry and Quantum Genetics

量子生物化学与量子遗传学

Rosen also questioned what he believed to be many aspects of mainstream interpretations of biochemistry and genetics. He objects to the idea that functional aspects in biological systems can be investigated via a material focus. One example: Rosen disputes that the functional capability of a biologically active protein can be investigated purely using the genetically encoded sequence of amino acids. This is because, he said, a protein must undergo a process of folding to attain its characteristic three-dimensional shape before it can become functionally active in the system. Yet, only the amino acid sequence is genetically coded. The mechanisms by which proteins fold are not completely known. He concluded, based on examples such as this, that phenotype cannot always be directly attributed to genotype and that the chemically active aspect of a biologically active protein relies on more than the sequence of amino acids, from which it was constructed: there must be some other important factors at work, that he did not however attempt to specify or pin down.

Rosen also questioned what he believed to be many aspects of mainstream interpretations of biochemistry and genetics. He objects to the idea that functional aspects in biological systems can be investigated via a material focus. One example: Rosen disputes that the functional capability of a biologically active protein can be investigated purely using the genetically encoded sequence of amino acids. This is because, he said, a protein must undergo a process of folding to attain its characteristic three-dimensional shape before it can become functionally active in the system. Yet, only the amino acid sequence is genetically coded. The mechanisms by which proteins fold are not completely known. He concluded, based on examples such as this, that phenotype cannot always be directly attributed to genotype and that the chemically active aspect of a biologically active protein relies on more than the sequence of amino acids, from which it was constructed: there must be some other important factors at work, that he did not however attempt to specify or pin down.

Rosen也质疑他认为的生物化学和遗传学的主流解释的许多方面。他反对生物系统的功能方面可以通过材料焦点来研究的观点。举个例子:Rosen质疑生物活性蛋白的功能能力可以单纯地用氨基酸的基因编码序列来研究。他说,这是因为蛋白质必须经过一个折叠过程,才能获得其特有的三维形状,然后才能在系统中发挥功能。然而,只有氨基酸序列是遗传编码的。蛋白质折叠的机制还不完全清楚。基于这样的例子,他得出结论,表型并不总是直接归因于基因型,生物活性蛋白的化学活性方面依赖于氨基酸序列,而氨基酸序列是其构建的基础:一定还有其他一些重要因素在起作用,但他并没有试图具体说明或确定。

【最终篇】罗森还质疑他所认为的生物化学和遗传学的主流解释的许多方面。他反对这样一种观点,即生物系统的功能方面可以通过聚焦物质方面来调查。举个例子: 罗森质疑生物活性蛋白质的功能能力可以仅仅通过基因编码的氨基酸序列来研究。他说,这是因为蛋白质必须经过一个折叠过程才能获得其特有的三维形状,然后才能在系统中发挥功能。然而,只有氨基酸序列是基因编码的。蛋白质折叠的机制尚不完全清楚。基于这样的例子,他得出结论,表型不能总是直接归因于基因型,生物活性蛋白质的化学活性方面不仅仅依赖于构成它的氨基酸序列: 一定还有其他一些重要因素在起作用,然而他并没有试图指明或确定。

Certain questions about Rosen's mathematical arguments were raised in a paper authored by Christopher Landauer and Kirstie L. Bellman[16] which claimed that some of the mathematical formulations used by Rosen are problematic from a logical viewpoint. It is perhaps worth noting, however, that such issues were also raised long time ago by Bertrand Russell and Alfred North Whitehead in their famous Principia Mathematica in relation to antinomies of set theory. As Rosen's mathematical formulation in his earlier papers was also based on set theory and the category of sets such issues have naturally re-surfaced. However, these issues have now been addressed by Robert Rosen in his recent book Essays on Life Itself, published posthumously in 2000. Furthermore, such basic problems of mathematical formulations of [math]\displaystyle{ (M{,}R) }[/math]--systems had already been resolved by other authors as early as 1973 by utilizing the Yoneda lemma in category theory, and the associated functorial construction in categories with (mathematical) structure.[17][18] Such general category-theoretic extensions of [math]\displaystyle{ (M{,}R) }[/math]-systems that avoid set theory paradoxes are based on William Lawvere's categorical approach and its extensions to higher-dimensional algebra. The mathematical and logical extension of metabolic-replication systems to generalized [math]\displaystyle{ (M{,}R) }[/math]-systems, or G-MR, also involved a series of acknowledged letters exchanged between Robert Rosen and the latter authors during 1967—1980s, as well as letters exchanged with Nicolas Rashevsky up to 1972.

Certain questions about Rosen's mathematical arguments were raised in a paper authored by Christopher Landauer and Kirstie L. Bellman which claimed that some of the mathematical formulations used by Rosen are problematic from a logical viewpoint. It is perhaps worth noting, however, that such issues were also raised long time ago by Bertrand Russell and Alfred North Whitehead in their famous Principia Mathematica in relation to antinomies of set theory. As Rosen's mathematical formulation in his earlier papers was also based on set theory and the category of sets such issues have naturally re-surfaced. However, these issues have now been addressed by Robert Rosen in his recent book Essays on Life Itself, published posthumously in 2000. Furthermore, such basic problems of mathematical formulations of (M{,}R)--systems had already been resolved by other authors as early as 1973 by utilizing the Yoneda lemma in category theory, and the associated functorial construction in categories with (mathematical) structure.I.C. Baianu: 1973, Some Algebraic Properties of (M{,}R) - Systems. Bulletin of Mathematical Biophysics 35, 213-217.I.C. Baianu and M. Marinescu: 1974, A Functorial Construction of (M{,}R)- Systems. Revue Roumaine de Mathematiques Pures et Appliquees 19: 388-391. Such general category-theoretic extensions of (M{,}R)-systems that avoid set theory paradoxes are based on William Lawvere's categorical approach and its extensions to higher-dimensional algebra. The mathematical and logical extension of metabolic-replication systems to generalized (M{,}R)-systems, or G-MR, also involved a series of acknowledged letters exchanged between Robert Rosen and the latter authors during 1967—1980s, as well as letters exchanged with Nicolas Rashevsky up to 1972.

在Christopher Landauer和Kirstie L. Bellman合著的一篇论文中,罗森的数学论证提出了一些问题,他们声称罗森使用的一些数学公式从逻辑角度来看是有问题的。然而,也许值得注意的是,很久以前,伯特兰德·罗素和阿尔弗雷德·诺斯·怀特黑德在他们著名的《数学原理》中就集合论的二律背反提出了这些问题。由于Rosen在他早期的论文中提出的数学公式也是基于集合理论的,集合的类别问题自然地重新浮出水面。然而,罗伯特·罗森在他死后于2000年出版的新书《生命本身》(Essays on Life Itself)中阐述了这些问题。此外,早在1973年,其他作者就利用范畴理论中的Yoneda引理,以及范畴中与(数学)结构相关的函数构造,解决了(M{,}R)系统的数学表述的基本问题。(M{,}R) -系统的若干代数性质。数学生物物理学通报35,213-217. c。Baianu和M. Marinescu: 1974, (M{,}R)系统的函数构造。纯粹数学和appliqueques 19: 388-391。这种避免集合理论悖论的(M{,}R)系统的一般范畴理论扩展是基于William Lawvere的范畴方法及其对高维代数的扩展。新陈代谢-复制系统的数学和逻辑扩展到广义(M{,}R)-系统,或G-MR,也涉及到1967 - 1980年期间Robert Rosen和后者的作者之间交换的一系列确认信件,以及到1972年与Nicolas Rashevsky交换的信件。

【最终篇】克里斯托弗 · 兰道尔(Christopher Landauer)和克里斯蒂 · 贝尔曼(Kirstie L. Bellman)在一篇论文中提出了一些关于罗森数学论证的问题,这篇论文声称罗森使用的一些数学公式从逻辑观点来看是有问题的。然而,也许值得注意的是,这些问题很久以前也被伯特兰·罗素和阿尔弗雷德·诺思·怀特黑德在他们著名的关于集合论悖论的数学原理中提出过。正如罗森在他的早期论文中的数学公式也是基于集合论的,这类问题的集合范畴自然重新浮出水面。然而,罗伯特 · 罗森在他2000年去世后出版的新书《论生命本身》中提到了这些问题。此外,(M{,}R)系统的数学公式的这些基本问题早在1973年就已经被其他作者利用范畴论中的 Yoneda 引理和范畴中的(数学)结构中的相关函子结构解决了。数学生物物理学通报35,213-217. c.Baianu和M. Marinescu: 1974,(M{,}R)系统的函数构造。这种避免集合论悖论的(M{,}R)系统的一般范畴论扩张是基于 William Lawvere 的范畴方法及其对高维代数的扩张。新陈代谢复制系统在数学和逻辑上扩展到广义(M{,}R)系统,或 G-MR,也包括罗伯特 · 罗森和后者在1967ー1980年间的一系列公认的书信往来,以及直到1972年与尼古拉斯 · 拉舍夫斯基的书信往来。

Rosen's ideas are becoming increasingly accepted in theoretical biology, and there are several current discussions [19][20][21][22]

Rosen's ideas are becoming increasingly accepted in theoretical biology, and there are several current discussionsRosen的观点在理论生物学中越来越被接受,目前有一些讨论

【最终篇】罗森的观点越来越被理论生物学所接受,目前有几种讨论

Erwin Schrödinger discussed issues of quantum genetics in his famous book of 1945, What Is Life? These were critically discussed by Rosen in Life Itself and in his subsequent book Essays on Life Itself.[23]

Erwin Schrödinger discussed issues of quantum genetics in his famous book of 1945, What Is Life? These were critically discussed by Rosen in Life Itself and in his subsequent book Essays on Life Itself.Note, by Judith Rosen, who owns the copyrights to her father's books: Some confusion about Rosen's analysis is due to errata in Life Itself. For example, the diagram that refers to (M{,}R)-Systems has more than one error; errors which do not exist in Rosen's manuscript for the book. The book Anticipatory Systems; Philosophical, Mathematical, and Methodological Foundations has the same diagram, correctly represented.

欧文Schrödinger在他1945年的著名著作《什么是生命?》中讨论了量子遗传学的问题。罗森在《生活本身》和他后来的《生活本身》一书中对这些问题进行了批判性的讨论。朱迪丝·罗森(Judith Rosen)拥有她父亲著作的版权,她的注释是:罗森分析的一些困惑源于《生命本身》(Life Itself)中的勘误。例如,引用(M{,}R)-Systems的图有不止一个错误;这些错误在罗森的手稿中是不存在的。《预期系统》一书;哲学、数学和方法论的基础有相同的图表,并被正确地表示出来。

【最终篇】埃尔温·薛定谔(Erwin Schrödinger)在他1945年的著名著作《什么是生命?》中讨论了量子遗传学的问题。罗森在《生命本身》和他后来的《论生命的本质》一书中对这些问题进行了批判性的讨论。朱迪丝·罗森(Judith Rosen)拥有她父亲著作的版权,她的注释是:罗森分析的一些困惑源于《生命本身》中的勘误。例如,引用(M{,}R)系统的图表有多个错误; 这些错误在罗森 的书稿中不存在。《预期系统:哲学、数学和方法论基础》一书有相同的图表,并被正确地表示出来了。

Comparison with other theories of life

与其他生命理论的比较

(M,R) systems constitute just one of several current theories of life, including the chemoton[24] of Tibor Gánti, the hypercycle of Manfred Eigen and Peter Schuster,[25][26] [27] autopoiesis (or self-building)[28] of Humberto Maturana and Francisco Varela, and the autocatalytic sets[29] of Stuart Kauffman, similar to an earlier proposal by Freeman Dyson.[30] All of these (including (M,R) systems) found their original inspiration in Erwin Schrödinger's book What is Life?[31] but at first they appear to have little in common with one another, largely because the authors did not communicate with one another, and none of them made any reference in their principal publications to any of the other theories. Nonetheless, there are more similarities than may be obvious at first sight, for example between Gánti and Rosen.[32] Until recently[33][34][35] there have been almost no attempts to compare the different theories and discuss them together.

(M,R) systems constitute just one of several current theories of life, including the chemoton of Tibor Gánti, the hypercycle of Manfred Eigen and Peter Schuster,

autopoiesis (or self-building) of Humberto Maturana and Francisco Varela, and the autocatalytic sets of Stuart Kauffman, similar to an earlier proposal by Freeman Dyson. 

All of these (including (M,R) systems) found their original inspiration in Erwin Schrödinger's book What is Life? but at first they appear to have little in common with one another, largely because the authors did not communicate with one another, and none of them made any reference in their principal publications to any of the other theories. Nonetheless, there are more similarities than may be obvious at first sight, for example between Gánti and Rosen. Until recently there have been almost no attempts to compare the different theories and discuss them together.

(M,R)系统只是目前几种生命理论中的一种,包括Tibor的化子Gánti, Manfred Eigen和Peter Schuster的超循环,

Humberto Maturana和Francisco Varela的autopoiesis(或自创生),以及Stuart Kauffman的自催化集合,类似于Freeman Dyson的早期提议。

所有这些系统(包括(M,R)系统)的最初灵感都来自Erwin Schrödinger的《什么是生命?但一开始,他们彼此之间似乎没有什么共同之处,这很大程度上是因为他们彼此之间没有交流,而且他们都没有在自己的主要出版物中提到任何其他理论。尽管如此,他们之间的相似之处可能比乍一看要多,例如Gánti和Rosen之间。直到最近,几乎没有人尝试将不同的理论进行比较和讨论。

【最终篇】(M,R)系统只是目前几种生命理论中的一种,包括Tibor的化子Gánti, Manfred Eigen和Peter Schuster的超循环,Humberto Maturana 和 Francisco Varela 的自创生(或自我构建) ,以及 Stuart Kauffman 的自催化集,类似于 Dyson 早期的提议。

【最终篇】所有这些(包括(m,r)系统)的灵感都来源于埃尔温·薛定谔(Erwin Schrödinger)的《生命是什么?》但起初他们之间似乎没有什么共同点,主要是因为作者之间没有交流,他们在主要出版物中也没有提到任何其他理论。尽管如此,两者之间的相似之处,乍看之下可能要显而易见的多,例如 Gánti 和罗森大厦之间的相似之处。直到最近,几乎没有人试图比较不同的理论并一起讨论它们。

Last Universal Common Ancestor (LUCA)

最后的共同祖先(露卡)

Some authors equate models of the origin of life with LUCA, the Last Universal Common Ancestor of all extant life.[36] This is a serious error resulting from failure to recognize that L refers to the last common ancestor, not to the first ancestor, which is much older: a large amount of evolution occurred before the appearance of LUCA.[37]

Some authors equate models of the origin of life with LUCA, the Last Universal Common Ancestor of all extant life. This is a serious error resulting from failure to recognize that L refers to the last common ancestor, not to the first ancestor, which is much older: a large amount of evolution occurred before the appearance of LUCA.

有些作者把生命起源的模型等同于卢卡,即所有现存生命的最后普遍共同祖先。这是一个严重的错误,因为没有认识到L指的是最后一个共同祖先,而不是第一个祖先,后者要古老得多:大量的进化发生在卢卡出现之前。

【最终篇】一些作者将生命起源的模型与露卡相提并论,露卡是所有现存生命的最后一个共同祖先。这是一个严重的错误,因为没有认识到 L指的是最后的共同祖先,而不是更古老的第一个祖先: 大量的进化发生在露卡出现之前。

Gill and Forterre expressed the essential point as follows:[38]

LUCA should not be confused with the first cell, but was the product of a long period of evolution. Being the "last" means that LUCA was preceded by a long succession of older "ancestors."

Gill and Forterre expressed the essential point as follows:

LUCA should not be confused with the first cell, but was the product of a long period of evolution. Being the "last" means that LUCA was preceded by a long succession of older "ancestors."

Gill和Forterre表示其要点如下:

卢卡不应该与第一个细胞混淆,但它是一个很长的进化时期的产物。作为“最后一个”意味着在卢卡之前有一长串更年长的“祖先”。

【最终篇】吉尔(Gill)和福特尔(Forterre)表达的基本观点如下:

 露卡不应与最初的生命细胞混淆,她是长期进化的产物。作为“最后一个”意味着露卡之前有一系列更古老的“祖先”。

Publications

出版物

Rosen wrote several books and many articles. A selection of his published books is as follows:

  • 1970, Dynamical Systems Theory in Biology New York: Wiley Interscience.
  • 1970, Optimality Principles, reissued by Springer in 2013[39]
  • 1978, Fundamentals of Measurement and Representation of Natural Systems, Elsevier Science Ltd,
  • 1985, Anticipatory Systems: Philosophical, Mathematical and Methodological Foundations. Pergamon Press.
  • 1991, Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life, Columbia University Press

Rosen wrote several books and many articles. A selection of his published books is as follows:

  • 1970, Dynamical Systems Theory in Biology New York: Wiley Interscience.
  • 1970, Optimality Principles, reissued by Springer in 2013
  • 1978, Fundamentals of Measurement and Representation of Natural Systems, Elsevier Science Ltd,
  • 1985, Anticipatory Systems: Philosophical, Mathematical and Methodological Foundations. Pergamon Press.
  • 1991, Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life, Columbia University Press

Rosen 写了几本书和许多文章。他出版的书籍精选如下:

  • 1970,纽约生物学动态系统理论: Wiley Interscience。1970,optimal Principles,republished in 2013
  • 1978,Fundamentals of Measurement and Representation of Natural Systems,Elsevier Science Ltd,
  • 1985,predictive Systems: Philosophical,Mathematical and methodology Foundations.Pergamon Press.1991,《生命本身: 生命的本质、起源和虚构的全面探究》 ,哥伦比亚大学出版社

Published posthumously:

Published posthumously:

  • 2000, Essays on Life Itself, Columbia University Press.
  • 2012, Anticipatory Systems; Philosophical, Mathematical, and Methodological Foundations, 2nd Edition, Springer

2000,Essays on Life Itself,Columbia University Press.

  • 2012年,《预期系统》 ; 《哲学、数学与方法论基础》 ,第二版,施普林格

References

参考文献

  1. Rosen, Robert (March 2006). "Autobiographical Reminiscences of Robert Rosen". Axiomathes. 16 (1–2): 1–23. doi:10.1007/s10516-006-0001-6. S2CID 122095161. Complex Systems Biology and Life’s Logic in memory of Robert Rosen
  2. "In Memory of Dr. Robert Rosen". February 1999. Archived from the original on February 1, 2010. Retrieved November 14, 2013.
  3. "Robert Rosen -- Complexity & Life". Archived from the original on March 15, 2008. Retrieved September 12, 2007.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  4. Mikulecky, Donald C (July 2001). "Robert Rosen (1934–1998): a snapshot of biology's Newton". Computers & Chemistry. 25 (4): 317–327. doi:10.1016/S0097-8485(01)00079-1. PMID 11459348.
  5. Louie, A.H. (2009). More than life itself : a synthetic continuation in relational biology. Frankfurt: Ontos Verlag. ISBN 978-3868380446. 
  6. Louie, A. H. (2013). Reflection of life : functional entailment and imminence in relational biology. New York, NY: Springer-Verlag New York Inc.. ISBN 978-1-4614-6927-8. 
  7. "Jon Awbrey Relation theory (the logical approach to relation theory)". Archived from the original on May 27, 2010. Retrieved January 31, 2010.
  8. Baianu, I. C. (March 2006). "Robert Rosen's Work and Complex Systems Biology". Axiomathes. 16 (1–2): 25–34. doi:10.1007/s10516-005-4204-z. S2CID 4673166. Complex Systems Biology and Life’s Logic in memory of Robert Rosen
  9. 引用错误:无效<ref>标签;未给name属性为rosen-enterprises1的引用提供文字
  10. Donald C. Mikulecky Robert Rosen: The well posed question and its answer - Why are organisms different from machines?
  11. Rosen, Robert (June 1, 1993). "Drawing the boundary between subject and object: Comments on the mind-brain problem". Theoretical Medicine (in English). 14 (2): 89–100. doi:10.1007/BF00997269. ISSN 1573-1200. PMID 8236065. S2CID 24953932.
  12. Anticipatory Systems: Philosophical, Mathematical, and Methodological Foundations, Robert Rosen, 2nd edition, with contributions by Judith Rosen, John J. Klineman and Mihai Nadin, 2012, lx + 472 pp., Springer, New York
  13. Robert Rosen. 1970. Dynamical Systems Theory in Biology, New York: Wiley Interscience.
  14. Rashevsky, N (1965). "The Representation of Organisms in Terms of (logical) Predicates". Bulletin of Mathematical Biophysics. 27 (4): 477–491. doi:10.1007/bf02476851. PMID 4160663.
  15. Rashevsky, N (1969). "Outline of a Unified Approach to Physics, Biology and Sociology". Bulletin of Mathematical Biophysics. 31 (1): 159–198. doi:10.1007/bf02478215. PMID 5779774.
  16. Landauer, C; Bellman, KL (2002). "Theoretical biology: Organisms and mechanisms". AIP Conference Proceedings. 627: 59–70. Bibcode:2002AIPC..627...59L. doi:10.1063/1.1503669.
  17. I.C. Baianu: 1973, Some Algebraic Properties of [math]\displaystyle{ (M{,}R) }[/math] - Systems. Bulletin of Mathematical Biophysics 35, 213-217.
  18. I.C. Baianu and M. Marinescu: 1974, A Functorial Construction of [math]\displaystyle{ (M{,}R) }[/math]- Systems. Revue Roumaine de Mathematiques Pures et Appliquees 19: 388-391.
  19. Wolkenhauer, P; Hofmeyr, J-HS (2007). "An abstract cell model that describes the self-organization of cell function in living systems". Journal of Theoretical Biology. 246 (3): 461–476. doi:10.1016/j.jtbi.2007.01.005. PMID 17328919.
  20. Cárdenas, M L; Letelier, J-C; Gutierrez, C; Cornish-Bowden, A; Soto-Andrade, J (2010). "Closure to efficient causation, computability and artificial life". Journal of Theoretical Biology. 263 (1): 79–92. doi:10.1016/j.jtbi.2009.11.010. hdl:10533/130547. PMID 19962389.
  21. Palmer, ML; Williams, RA; Gatherer, D (2016). "Rosen's (M,R) system as an X-machine" (PDF). Journal of Theoretical Biology. 408: 97–104. doi:10.1016/j.jtbi.2016.08.007. PMID 27519952.
  22. Cornish-Bowden, A; Cárdenas, ML (2020). "Contrasting theories of life: Historical context, current theories. in search of an ideal theory". BioSystems. 188: 104063. doi:10.1016/j.biosystems.2019.104063. PMID 31715221.
  23. Note, by Judith Rosen, who owns the copyrights to her father's books: Some confusion about Rosen's analysis is due to errata in Life Itself. For example, the diagram that refers to [math]\displaystyle{ (M{,}R) }[/math]-Systems has more than one error; errors which do not exist in Rosen's manuscript for the book. The book Anticipatory Systems; Philosophical, Mathematical, and Methodological Foundations has the same diagram, correctly represented.
  24. Gánti, Tibor (2003). The Principles of Life. Oxford University Press. ISBN 9780198507260. 
  25. Eigen, M; Schuster, P. "The hypercycle: a principle of natural self-organization. A: emergence of the hypercycle". Naturwissenschaften. 64 (11): 541–565. doi:10.11007/bf00450633.
  26. Eigen, M; Schuster, P. "The hypercycle: a principle of natural self-organization. B: the abstract hypercycle". Naturwissenschaften. 65 (1): 7–41. doi:10.1007/bf00420631.
  27. Eigen, M; Schuster, P. "The hypercycle: a principle of natural self-organization. C: the realistic hypercycle". Naturwissenschaften. 65 (7): 41–369. doi:10.1007/bf00420631.
  28. Maturana, H. R.; Varela, F. (1980). Autopoiesis and cognition: the realisation of the living. Dordrecht: D. Reidel Publishing Company. 
  29. Kauffman, S. A. (1969). "Metabolic stability and epigenesis in randomly constructed genetic nets". J. Theor. Biol. 22 (3): 437–467. doi:10.1016/0022-5193(69)90015-0.
  30. Dyson, F. J. (1982). "A model for the origin of life". J. Mol. Evol. 18 (5): 344–350. doi:10.1007/bf01733901.
  31. Schrödinger, Erwin (1944). What is Life?. Cambridge University Press. 
  32. Cornish-Bowden, A. (2015). "Tibor Gánti and Robert Rosen: contrasting approaches to the same problem". J. Theor. Biol. 381: 6–10. doi:10.1016/j.jtbi.2015.05.015.
  33. Letelier, J C; Cárdenas, M L; Cornish-Bowden, A (2011). "From L'Homme Machine to metabolic closure: steps towards understanding life". J. Theor. Biol. 286 (1): 100–113. doi:10.1016/j.jtbi.2011.06.033.
  34. Igamberdiev, A.U. (2014). "Time rescaling and pattern formation in biological evolution". BioSystems. 123: 19–26. doi:10.1016/j.biosystems.2014.03.002.
  35. Cornish-Bowden, A; Cárdenas, M L (2020). "Contrasting theories of life: historical context, current theories. In search of an ideal theory". BioSystems. 188: 104063. doi:10.1016/j.biosystems.2019.104063.
  36. Jheeta, S.; Chatzitheodoridis, E.; Devine, Kevin; Block, J. (2021). "The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis". Life. 11 (9): 872. doi:10.3390/life11090872.
  37. Cornish-Bowden, A; Cárdenas, M L. "Life before LUCA". J. Theor. Biol. 434: 68–74. doi:10.1016/j.jtbi.2017.05.023.
  38. Gill, S.; Forterre, P. (2016). "Origin of life: LUCA and extracellular membrane vesicles (EMVs)". Int. J. Astrobiol. 15 (1): 7–15. doi:10.1017/S1473550415000282.
  39. Robert Rosen (2013). Optimality Principles in Biology. Springer. ISBN 978-1489964205. 

Further reading

进一步的阅读

  • Elsasser, M.W.: 1981, "A Form of Logic Suited for Biology.", In: Robert, Rosen, ed., Progress in Theoretical Biology, Volume 6, Academic Press, New York and London, pp 23–62.
  • Christopher Landauer and Kirstie L. Bellman Theoretical Biology: Organisms and Mechanisms
  • "Reminiscences of Nicolas Rashevsky". (Late) 1972. by Robert Rosen.

External links

外部链接

模板:Wikiquote


  • Panmere website on Rosennean Complexity: "Judith Rosen's website provides free biographical information, discussions of her father's work, and also free reprints of Robert Rosen's work".
  • Robert Rosen: The well posed question and its answer: why are organisms different from machines? An essay by Donald C. Mikulecky.
  • Robert Rosen: June 27, 1934 — December 30, 1998 by Aloisius Louie.
  • 罗森尼复杂性Panmere网站: “朱迪思 · 罗森的网站提供了免费的个人简历、关于她父亲作品的讨论,以及罗伯特 · 罗森作品的免费再版。”
  • 罗伯特 · 罗森: 这个问题及其答案是: 为什么有机体不同于机器?作者: Donald c. Mikulecky。
  • 罗伯特 · 罗森: 1934年6月27日ー1998年12月30日。

模板:Society for General Systems Research Presidents


Category:Systems biologists Category:1934 births Category:1998 deaths Category:Dalhousie University faculty Category:American systems scientists Category:Theoretical biologists Category:Columbia University alumni

类别: 系统生物学家类别: 1934年出生类别: 1998年死亡类别: 戴尔豪斯大学教员类别: 美国系统科学家类别: 理论生物学家类别: 哥伦比亚大学校友


This page was moved from wikipedia:en:Robert Rosen (biologist). Its edit history can be viewed at 罗伯特罗森/edithistory









本中文词条由范星辰参与编译和审校,糖糖编辑,如有问题,欢迎在讨论页面留言。


本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。