遥相关
本词条由李若兰初步翻译
此词条暂由彩云小译翻译,翻译字数共570,未经人工整理和审较,带来阅读不便,请见谅。
Teleconnection in atmospheric science refers to climate anomalies being related to each other at large distances (typically thousands of kilometers). The most emblematic teleconnection is that linking sea-level pressure at Tahiti and Darwin, Australia, which defines the Southern Oscillation.
大气中的遥相关(Teleconnection)是指相距很远的区域之间(一般是相距数千公里区域之间)相互影响和关联的气候异常。南方涛动(ENSO,EI-NINO-Southern Oscillation)是一个典型的遥相关现象。东南太平洋塔希提(148°05′W, 17°53′S)和澳大利亚达尔文(130°59′E,12°20S′)之间存在一种大尺度的气压升降振荡,当塔希提岛海平面气压变高时,达尔文海平面气压变低。达尔文和塔希提两地之间的海平面气压距平值被普遍用以表示南方涛动的特征指数,即SOI。
History 历史
Teleconnections were first noted by the British meteorologist Sir Gilbert Walker in the late 19th century, through computation of the correlation between time series of atmospheric pressure, temperature and rainfall. They served as a building block for the understanding of climate variability, by showing that the latter was not purely random.
19世纪末 ,英国气象学家吉尔伯特·沃克爵士在计算气压、气温和降雨的时间序列相关性时,首次注意到了遥相关现象。遥相关现象表明气候变化并不是单纯随机的,这成为理解气候变异的关键。
Indeed, the term El Niño–Southern Oscillation (ENSO) is an implicit acknowledgment that the phenomenon underlies variability in several locations at once. It was later noticed that associated teleconnections occurred all over North America, as embodied by the Pacific–North American teleconnection pattern.
事实上,厄尔尼诺-南方涛动(ENSO)这个术语暗示了一种认识,即这种现象构成了数个地区同时发生变化的基础。人们后来注意到,关联的遥相关发生在整个北美洲地区,正如太平洋-北美洲遥相关模型所表现的一样。
In the 1980s, improved observations allowed detection of teleconnections at larger distances throughout the troposphere.[1] Concomitantly, the theory emerged that such patterns could be understood through the dispersion of Rossby waves due to the spherical geometry of the Earth.[2] This is sometimes called the "proto-model".[3]
在1980年代,观测的提升使在整个对流层上更大距离的探测遥相关成为可能 。[1]与此同时,理论表明这种模式可以通过因地球的球面几何而产生的罗斯贝波的弥散来理解。[2] 这有时被称为“原始模型”。[3]
Theory 理论
Teleconnections within the tropical Pacific began to be understood thanks to the idealized calculations of A.E. Gill[4] and later through more complex models.
热带太平洋内的遥相关理论开始被人们理解,这要归功于 A.E.Gill[4] 的理想化计算以及后来更复杂的模型。
Building upon the "proto-model", much of the early theory of teleconnections dealt with barotropic, linearized model of atmospheric flow about a constant mean state. However, the model was soon invalidated when it was discovered that actual teleconnection patterns were nearly insensitive to the location of the forcing, in direct contradiction with the predictions offered by this simple picture. Simmons and collaborators[5] showed that if a more realistic background state was prescribed, it would become unstable, leading to a similar pattern regardless of the location of the forcing, in accordance to observations. This "modal" property turned out to be an artifact of the barotropicity of the model, though it has appeared for more subtle reasons in more realistic models.
在“原始模式”的基础上,早期的遥相关理论大多涉及一个恒定平均状态下的正压线性化大气流动模式。然而,当发现实际的遥相关模式对强迫的位置几乎不敏感时,这个模型很快就失效了,这直接与这个简单情景所提供的预测相矛盾。西蒙斯和他的合作者[5] 表明,根据观察,如果一个更现实背景状态被指定,它将变得不稳定,无论强迫的位置如何,都会导致一类似的模式。这种“模态”特性最终被证明是模式正压性的人为产物,尽管在更为现实的模式中出现了更为微妙的原因。
More recent work has shown that most teleconnections from the tropics to the extratropics can be understood to surprising accuracy by the propagation of linear, planetary waves upon a 3-dimensional seasonally-varying basic state.[6] Because the patterns are persistent over time and somewhat "locked" to geographical features such as mountain ranges, these waves are called stationary.
最近的工作表明,从热带到温带的大多数遥相关可以通过线性行星波在三维季节性变化基本状态上的传播被惊人准确的理解。[6] 由于这些波形是持久的,并且某种程度上“锁定”于地理特征(如山脉),因此这些波被称为驻波。
Another mechanism of teleconnection between tropical oceans and midlatitude regions is symmetric along latitude circles (i.e. "zonal") and between hemispheres, unlike the stationary wave mechanism. It relies on interactions between transient eddies and the mean atmospheric flow that are mutually reinforcing (i.e. non-linear). It has been shown to explain some aspects of ENSO teleconnections in temperature[7] and rainfall.[8] Other authors suggested, as well, a correlation between many teleconnection patterns and local climate change factors.[9]
不同于驻波机制,热带海洋与中纬度地区遥相关的另一个机制是沿纬度圈(“纬向”)和两半球之间的对称性。它依赖于瞬时涡动和平均大气流之间相辅相成(非线性)的交互作用。它已经证明可以解释 “厄尔尼诺-南方涛动”在温度[7] 和降水[8] 的一些遥相关现象。其他作者也提出了许多遥相关模式和当地气候变化因素之间的相关性。[9]
Applications 应用
Since tropical sea surface temperatures are predictable up to two years ahead of time,[10] knowledge of teleconnection patterns gives some amount of predictability in remote locations with an outlook sometimes as long as a few seasons.[11] For instance, predicting El Niño enables prediction of North American rainfall, snowfall, droughts or temperature patterns with a few weeks to months lead time. In Sir Gilbert Walker's time, A strong El Niño usually meant a weaker Indian monsoon, but this anticorrelation has weakened in the 1980s and 1990s, for controversial reasons.模板:Fact
由于热带海洋表面温度可以提前两年预测,[10] 遥相关模式的知识可以为偏远地区提供某种程度的可预测性,有时候可以预测几个季节。[11] 例如,预测厄尔尼诺现象可以预测北美洲的降雨、降雪、干旱或气温模式。在吉尔伯特 · 沃克爵士的时代,强烈的厄尔尼诺现象通常意味着较弱的印度季风,但由于有争议的原因,这种反相关性在20世纪80年代和90年代已经减弱。
See also
- Sudden stratospheric warming
- 平流层突发性增温
References
- ↑ 1.0 1.1 Wallace, John M.; Gutzler, David S. (1981). "Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter". Monthly Weather Review. 109 (4): 784. Bibcode:1981MWRv..109..784W. doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.
- ↑ 2.0 2.1 Hoskins, Brian J.; Karoly, David J. (1981). "The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing". Journal of the Atmospheric Sciences. 38 (6): 1179. Bibcode:1981JAtS...38.1179H. doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.
- ↑ 3.0 3.1 Trenberth, Kevin E.; Branstator, Grant W.; Karoly, David; Kumar, Arun; Lau, Ngar-Cheung; Ropelewski, Chester (1998). "Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures". Journal of Geophysical Research. 103 (C7): 14291–14324. Bibcode:1998JGR...10314291T. doi:10.1029/97JC01444.
- ↑ 4.0 4.1 Gill, A. E. (1980). "Some simple solutions for heat-induced tropical circulation". Quarterly Journal of the Royal Meteorological Society. 106 (449): 447–462. Bibcode:1980QJRMS.106..447G. doi:10.1002/qj.49710644905.
- ↑ 5.0 5.1 Simmons, A. J.; Wallace, J. M.; Branstator, G. W. (1983). "Barotropic Wave Propagation and Instability, and Atmospheric Teleconnection Patterns". Journal of the Atmospheric Sciences. 40 (6): 1363. Bibcode:1983JAtS...40.1363S. doi:10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.
- ↑ 6.0 6.1 Held, Isaac M.; Ting, Mingfang; Wang, Hailan (2002). "Northern Winter Stationary Waves: Theory and Modeling". Journal of Climate. 15 (16): 2125. Bibcode:2002JCli...15.2125H. CiteSeerX 10.1.1.140.5658. doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.
- ↑ 7.0 7.1 Seager, Richard; Harnik, Nili; Kushnir, Yochanan; Robinson, Walter; Miller, Jennifer (2003). "Mechanisms of Hemispherically Symmetric Climate Variability*". Journal of Climate. 16 (18): 2960. Bibcode:2003JCli...16.2960S. doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.
- ↑ 8.0 8.1 Seager, R.; Harnik, N.; Robinson, W. A.; Kushnir, Y.; Ting, M.; Huang, H.-P.; Velez, J. (2005). "Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability". Quarterly Journal of the Royal Meteorological Society. 131 (608): 1501. Bibcode:2005QJRMS.131.1501S. doi:10.1256/qj.04.96.
- ↑ 9.0 9.1 Ramadan, H. H.; Ramamurthy, A. S.; Beighley, R. E. (2011). "Inter-annual temperature and precipitation variations over the Litani Basin in response to atmospheric circulation patterns". Theoretical and Applied Climatology. 108 (3–4): 563. Bibcode:2012ThApC.108..563R. doi:10.1007/s00704-011-0554-1.
- ↑ 10.0 10.1 Chen, Dake; Cane, Mark A.; Kaplan, Alexey; Zebiak, Stephen E.; Huang, Daji (2004). "Predictability of El Niño over the past 148 years". Nature. 428 (6984): 733–6. Bibcode:2004Natur.428..733C. doi:10.1038/nature02439. PMID 15085127.
- ↑ 11.0 11.1 IRI Seasonal Climate Forecasts
Further reading
- Glantz, M.H; Katz, Richard W; Nicholls, N (1991). Teleconnections Linking Worldwide Climate Anomalies. Cambridge: Cambridge University Press. ISBN 978-0-521-36475-1.
- Trenberth, Kevin E.; Branstator, Grant W.; Karoly, David; Kumar, Arun; Lau, Ngar-Cheung; Ropelewski, Chester (1998). "Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures". Journal of Geophysical Research. 103 (C7): 14291–14324. Bibcode:1998JGR...10314291T. doi:10.1029/97JC01444.
= 进一步阅读 =
External links
= = 外部链接 =
Category:Atmospheric sciences Category:Weather prediction Category:Climate patterns
分类: 大气科学分类: 天气预报分类: 气候模式
This page was moved from wikipedia:en:Teleconnection. Its edit history can be viewed at 遥相关/edithistory