集智俱乐部读书会

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索


集智俱乐部读书会是面向广大科研工作者的系列论文研读活动,其目的是共同深入学习探讨某个科学议题,了解前沿进展,激发科研灵感,促进科研合作,降低科研门槛。

每个读书会均有对应的微信交流群。付费报名读书会后,即可添加读书会负责人微信,并入群交流。

读书会活动始于 2008 年,至今已经有 40 余个主题,内容涵盖复杂系统、人工智能、脑与意识、生命科学、因果科学、计算社会科学等。凝聚了众多优秀科研工作者,促进了科研合作发表论文,孵化了许多科研产品。如 2013 年的“深度学习”读书会孕育了彩云天气 APP,2015 年的“集体注意力流”读书会产生了众包书籍《走近2050》等。

集智俱乐部从2020年开始举办线上读书会,目前已有因果科学、生命复杂性、图神经网络、复杂系统自动建模、科学学、复杂经济学等主题的读书会,沉淀了非常多的主题和讨论,具体可看以下列表。

集智俱乐部2020-2021年读书会排期表
读书会主题 核心发起人 运营负责人 报名途径 持续期数 当前状态 固定时间 开始时间
宏观金融系列读书会 王有贵 王朝会 了解更多详情,点此链接报名

查看课程,点此链接


添加小助手微信:Swarma Assistant
小助手微信
小助手微信
28 已结束 2021年4月-6月
复杂经济学读书会 李红刚等 王朝会 31 已结束 周二晚上20:00-22:00 2021年1月-6月
企业发展建模与预测读书会 张江等 陶如意 12 已结束 周一晚上20:00-22:00 2021年4月-7月
复杂系统自动建模读书会 张江 王婷 12 已结束 周日晚上20:00-22:00 2020年2月-5月
面向复杂系统的人工智能研究读书会 张江 张章 9 已结束 周日晚上20:00-22:00 2020年7月-10月
生命复杂性系列读书会 傅渥成等 刘培源 12 已结束 周四晚上20:00-22:00 2020年11月-2021年2月
科学学读书会 胡乔 胡乔 6 已结束 周三晚上20:00-22:00 2020年7月-8月
因果科学与Causal AI 读书会 龚鹤扬等 王婷 16 已结束 周日晚上19:00-21:00 2020年9月-2021年1月
因果科学与Causal AI读书会第二季 李奉治等 王婷 11 已结束 周日上午10:00-12:00 2021年2月-7月
因果科学与Causal AI 读书会第三季 李奉治 段月然 18 已结束 周日上午10:00-12:00 2021年7月-2022年3月
因果涌现读书会 张江等 王婷 16 已结束 周六上午9:00-11:00 2021年8月-2022年1月
因果涌现读书会第二季 张江等 王婷 1月8日 进行中 周日晚上19:00-21:00 2022年5月-
社会计算读书会 王硕等 王建男 12 已结束 周四晚上20:00-22:00 2021年5月-8月
社会计算读书会第二季 罗家德等 王建男 12 待开始 2022年6月-
复杂系统管理学读书会 罗家德 张爱华 13 已结束 周三晚上19:00-21:00 2021年9月-2022年1月
自生成结构读书会 仇玮祎等 李欣儒 13 已结束 周五晚19:00-21:00 2021年11月-2022年3月
地球科学读书会 邓琪敏等 晏丽 13 已结束 周四晚19:00-21:00 2021年12月-2022年4月
神经动力学读书会 王鑫迪等 周莉 9月12日 进行中 周六下午14:00-16:00 2022年3月-

宏观金融系列读书会

本系列读书会由在联合宏观金融领域的同行学者共同研读一系列经典宏观金融文献和最新研究进展,为大家展示经济学家是如何理解作为经济体核心的货币和金融,以及它们是如何在宏观经济中发挥着重要作用的。

读书会主题包括:

等共计20期,解读了金融领域的众多文献,包括:

  • Commercial Banks as Creators of 'Money'
  • Agency costs, net worth and business fluctuations
  • Banking theories and Macroeconomics
  • Political Aspects of Full Employment
  • Financial stability in networks of financial institutions and market infrastructures
  • Pathways towards instability in financial networks
  • Vulnerable growth
  • Stock‐Flow Consistent macroeconomic models: a survey
  • Great Controversies: Developing the Domestic Market
  • The financial instability hypothesis
  • ......

等23篇论文

查看更多回放视频,请前往集智学园宏观金融系列读书会

复杂经济学读书会

复杂性科学的思想和方法可以为经济学研究再开一扇通向未来之门。本次读书会以科研交流为主,希望以此普及复杂经济学思想,促进复杂经济学教育,推进复杂经济学研究。

读书会主题包括:

等共计18期,解读了经济学领域的众多文献,包括:

  • Complexity Economics:A Different Framework for Economic Thought
  • Asset Pricing Under Endogenous Expectations in an Artificial Stock Market
  • The persistent effect of initial success: Evidence from venture capital
  • The evolution of technology within a simple computer model
  • Professional diversity and the productivity of cities
  • Interpretable socioeconomic status inference from aerial imagery through urban patterns
  • Predicting neighborhoods’ socioeconomic attributes using restaurant data
  • Online social activity reflects economic status
  • Predicting Poverty and Wealth from Mobile Phone Metadata
  • Migration patterns in China extracted from mobile positioning data.和Economic outcomes predicted by diversity in cities.
  • ......

等21篇论文。


了解更多读书会详情,请前往集智斑图复杂经济学读书会

查看更多回放视频,请前往集智学园复杂经济学读书会

企业发展建模与预测读书会

【第一季:企业发展建模与预测】

读书会内容主要聚焦于复杂系统自动建模技术在企业研究领域的应用,包括企业破产预测,企业财务属性预测,企业网络研究,企业建模等等。目的在于进一步深入探索复杂科学理论和方法在实证研究中的应用,进一步揭示真实世界的运作模式。

读书会主题包括:

等共计11期,解读了企业建模与发展预测领域的众多文献,包括:

  • The evolution of firm networks: from emergence to early growth of the firm
  • Firm networks and firm development: The role of the relational mix
  • Predicting success in the worldwide start-up network
  • Dynamics of firm financial evolution and bankruptcy prediction
  • Exploring Small-World Network with an Elite-Clique: Bringing Embeddedness Theory into the Dynamic Evolution of a Venture Capital Network
  • Corporate default predictions using machine learning: Literature review
  • Financial time series forecasting with deep learning : A systematic literature review
  • Curriculum learning in deep neural networks for financial forecasting
  • Secure and automated enterprise revenue forecasting

9篇论文。


【第二季:复杂系统自动建模】

旨在汇集一批对复杂系统自动建模感兴趣或者正在进行相关研究的朋友,通过阅读和讨论一系列前沿或者经典的对复杂系统进行结构和动力学重构的文章,进行深度讨论和交流,从而激发科研想法,促进读书会成员内部的科研的合作,产出和落地,并产生学术价值。

读书会主题包括:

......

等12期,解读文献包括

  • Inner Composition Alignment for Inferring Directed Networks from Short Time Series
  • A statistical inference approach to structural reconstruction of complex networks from binary time series
  • Comparison of six methods for the detection of causality in a bivariate time series
  • Detecting and quantifying causal associations in large nonlinear time series datasets
  • PM2.5-GNN: A Domain Knowledge Enhanced Graph Neural Network For PM2.5 Forecasting
  • Mapping gene regulatory networks from single-cell omics data
  • The Book of Why: The New Science of Cause and Effect
  • Investigating Causal Relations by Econometric Models and Cross-spectral Methods
  • Inferring causation from time series in Earth system sciences
  • Model-Free Reconstruction of Excitatory Neuronal Connectivity from Calcium Imaging Signals
  • ......

等17篇论文。


了解更多读书会详情,请前往集智斑图企业建模与发展预测读书会论文清单

查看更多回放视频,请前往集智学园企业建模与发展预测

面向复杂系统的人工智能研究读书会

通过闭门分享讨论的形式,我们将为大家提供更加沉浸,深度,自由的交流环境。帮助大家了解面向复杂系统的人工智能研究和前沿进展,了解深度学习,因果推断等方法论如何与复杂系统研究相互影响。为大家在自己的研究领域引入何种人工智能方法提供灵感。

读书会主题包括:

  • ......

等14期。

此外,还邀请了数名进行过高质量分享的青年学者参与我们后续的闭门研讨活动:“集智-凯风研读营”。研读营是集智年度最高水准的闭门科学研讨活动,是集智科学家们的年度聚会。在研读营期间,你将与多位来自不同领域,世界各个高校的集智科学家们进行为期一周的广泛而深刻的闭门交流,共享前沿知识和灵感。历届研读营都是集智科学家相互赋能的平台,每次研读营之后,集智科学家们都会带着新的灵感进一步推进自己的研究。

了解更多读书会详情,请前往集智斑图面向复杂系统的人工智能读书会

查看更多回放视频,请前往集智学园面向复杂系统的人工智能读书会

生命复杂性系列读书会

跨尺度、跨层次的涌现是复杂系统研究的关键问题,生命起源和意识起源这两座仰之弥高的大山是其代表。而因果涌现理论、机器学习重整化技术、自指动力学等近年来新兴的理论与工具,有望破解复杂系统的涌现规律。「生命复杂性」系列读书会由东京大学博士后傅渥成等发起,力图促进关于生命现象的跨学科交流。

读书会主题包括:


了解更多读书会详情,请前往集智斑图生命复杂性读书会

查看更多回放视频,请前往集智学园生命复杂性读书会

科学学读书会

运用复杂网络的分析方法,从引文网络、科学家合作网络、科学网络的动力学、科学家职业生涯动力学、学科交叉与知识创新等方面做了知识梳理和前沿研究的报告。科学学、文献计量学、网络分析和图情领域等均可参考。

读书会主题包括:

解读了

  • Node2vec Representation for Clustering Journals and as A Possible Measure of Diversity
  • Atypical Combinations and Scientific Impact
  • The evolution of interdisciplinarity in physics research
  • Interdisciplinarity and Impact: Distinct Effects of Variety, Balance, and Disparity
  • Innovation network ,proceedings of the national academy of sciences
  • Network-based statistical comparison of citation topology of bibliographic databases
  • Community structure of the physical review citation network
  • Universality of citation distributions and its explanation
  • Large teams develop and small teams disrupt science and technology
  • Hot streaks in artistic, cultural, and scientific careers
  • ......

等15篇论文。

了解更多读书会详情,请前往集智斑图复杂系统视角下的科学学读书会

查看更多回放视频,请前往集智学园复杂系统视角下的科学学读书会

因果科学与Causal AI 读书会

【因果科学社区】

因果科学社区由智源社区、集智俱乐部共同推动,面向因果科学领域的垂直型学术讨论社区,目的是促进因果科学专业人士和兴趣爱好者们的学习、交流和合作,推进因果科学学术、产业生态的建设和落地,孕育新一代因果科学领域的学术专家和产业创新者。

【第一季:因果科学与Causal AI框架及前沿方向】

图灵奖得主朱迪亚·珀尔教授认为,当下正在进行一场改变数据科学的新革命 ”因果革命“。它以科学为中心,涉及从数据到政策、可解释性、机制的泛化,再到一些社会科学中的归因和公平性问题,甚至哲学中的创造性和自由意志 。本季读书会以Elements of Causal Inference一书为线索,主要展现因果科学在机器学习各个方向上的影响,包括强化学习、迁移学习、表示学习等等,并分享在工业界的部分应用成果。本季读书会梳理了因果科学的核心内容,理解它如何改变数据科学,助力 AI 系统超越曲线拟合和获得回答因果问题的能力。

分享主题包括:

等16期,以Elements of Causal Inference一书为线索,主要展现因果科学在机器学习各个方向上的影响,包括强化学习、迁移学习、表示学习等等,并分享在工业界的部分应用成果。


了解更多读书会详情,请前往集智斑图因果科学与CausalAI读书会第一季

查看更多回放视频,请前往集智学园因果科学与CausalAI读书会第一季

【第二季:因果科学与Causal AI基础实战】

因果推断与机器学习领域的结合已经吸引了越来越多来自学界业界的关注。第一季读书会主要关注了因果科学在机器学习方向上的前沿应用,为深入探讨、普及推广因果科学议题,第二季读书会着力于实操性、基础性,带领大家精读因果科学方向两本非常受广泛认可的入门教材:Causal inference in statistics: A primer和Elements of causal inference: foundations and learning algorithms。读书会以直播讨论为主,结合习题交流、夜谈、编程实践、前沿讲座等多类型内容,主要面向有机器学习背景、希望深入学习因果科学基础知识和重要模型方法、寻求解决相关研究问题的研究人员。

分享主题包括:

等15期内容。


了解更多读书会详情,请前往集智斑图因果科学与CausalAI读书会第二季

查看更多回放视频,请前往集智学园因果科学与CausalAI读书会第二季

【第三季:因果科学与Causal +X领域概览】

“因果”并不是一个新概念,而是一个已经在多个学科中使用了数十年的分析技术。通过前两季的分享,我们主要梳理了因果科学在计算机领域的前沿进展。如要融会贯通,我们需要回顾数十年来在社会学、经济学、医学、生物学等多个领域中,都是使用了什么样的因果模型、以什么样的范式、解决了什么样的问题。我们还要尝试进行对比和创新,看能否以现在的眼光,用其他的模型,为这些研究提供新的解决思路。

分享主题包括:

「基础理论学习」
「案例研讨」
「深入理论学习」

等19期。

了解更多读书会详情,请前往集智斑图因果科学与CausalAI读书会第三季

查看更多回放视频,请前往集智学园因果科学与CausalAI读书会第三季

相关学习路径

因果涌现读书会

【因果涌现读书会第一季】

围绕”因果涌现“主题系统性的讨论因果涌现理论和技术实现、涌现理论、重整化与机器学习、自指动力学、整合信息论、多尺度建模等重要概念和方法。

分享主题包括:

等16期。


了解更多读书会详情,请前往集智斑图因果涌现读书会第一季 入门路径

查看更多回放视频,请前往集智学园因果涌现读书会第一季

【因果涌现读书会第二季】

通过阅读前沿文献,加深我们对因果、涌现等概念的理解;聚焦于寻找因果与涌现、多尺度等概念相结合的研究方向;并探索复杂系统多尺度自动建模的研究方向。

分享主题包括:

模块一:追根溯源,我们将深挖近年来在复杂科学领域逐渐成长壮大的信息论拓展,包括整合信息论、互信息分解等技术和方法;
模块二:因果涌现,我们将进一步探索因果涌现理论,特别关注如何将因果作为工具来定量探索复杂系统之中的一些古老的难题,如:自上而下的因果等;
模块三:因果表示学习,将重点追踪因果科学以及表示学习理论中有关粗粒化和多尺度的概念;
模块四:机器学习多尺度自动建模,则重点关注多尺度机器学习动力学建模方面的最新文献和进展;
模块五:量子因果,将探索如何将量子信息与因果科学融为一体,这将大大拓展我们对因果和信息等概念的理解。

了解更多读书会详情,请前往集智斑图因果涌现读书会第二季 入门路径

查看更多回放视频,请前往集智学园因果涌现读书会第二季

相关学习路径

社会计算读书会

【社会计算读书会第一季】

为了相关领域学者更好地讨论和交流,推动交叉学科间的合作,促进社会计算的发展和研究,集智俱乐部组织了社会计算读书会,期待和大家一起分享论文、讨论和交流碰撞。

分享主题包括:

社会计算介绍综述
计算科学之于社会计算
复杂科学之于社会计算

等12期。


了解更多读书会详情,请前往集智斑图社会计算读书会第一季

查看更多回放视频,请前往集智学园社会计算读书会第一季

【社会计算读书会第二季】(2022年6月18日开始)

对计算社会科学中常见的分析处理问题的方法进行介绍,对主要的方法类型和如何运用这些方法研究问题进行梳理。


了解更多读书会详情,请前往集智斑图社会计算读书会第二季

查看更多回放视频,请前往集智学园社会计算读书会第二季

相关学习路径

复杂系统管理学读书会

传统的管理研究和实践早已成果非凡,今非昔比。强调混沌、系统观、网络观、非线性和自组织的复杂性科学思维,已经从物理学、生物学延伸到社会学、经济学和管理学,本季读书会将对此进行讨论。


分享主题包括:

  • ......

等13期。


了解更多读书会详情,请前往集智斑图复杂管理学读书会

查看更多回放视频,请前往集智学园复杂管理学读书会

相关学习路径

自生成结构读书会

为了能够更加深入地讨论生命的本质结构和意识等重要问题,并在不同学科间建立有效沟通的桥梁,自生成结构第一季主要围绕形成自生成结构与自复制自动机研究背景相关的基本共识展开。前期将从科学哲学、复杂科学和生物学等学科的不同角度来分别介绍,各个学科在关注生命和意识本质的主体性和生成过程性问题的学科进展和背景,建立起其讨论的基础话语体系。后半部分将进行《自复制自动机》部分内容的学习,在学习中辨析冯诺依曼建立的冯诺依曼计算机结构、自复制自动机以及元胞自动机等模型与自指、图灵机及当代神经网络之间的关系等。

【第一季:共识——自生成结构与自复制自动机的研究背景】

分享主题包括:

第一季前期,从科学哲学、复杂科学和生物学的角度介绍这三个学科关注生命和意识起源问题的学科进展和背景,建立我们讨论的基础话语体系。
第一季后期,进行《自复制自动机》部分内容的学习。

等13期。


了解更多读书会详情,请前往集智斑图自生成结构读书会

查看更多回放视频,请前往集智学园复杂管理学读书会

相关学习路径

地球科学读书会

系统地研究这些复杂网络、深度学习等方法在地球系统科学中应用的相关文献。

总体综述
统计物理
机器学习

等14期

相关学习路径

神经动力学读书会

人类大脑是一个由数以百亿计的神经元相互连接所构成的复杂系统。近年来,脱胎于系统科学的动力学建模方法,逐渐被广泛地应用于神经科学研究中,其作为一种绝佳的数理工具,愈发地受到研究人员的重视,在类脑计算、脑认知原理解析和脑重大疾病致病机理探索等具体方面,发挥着不可替代的作用。本次读书会将围绕神经网络多尺度建模及其在脑疾病、脑认知方面的应用进行研讨。


分享主题包括

神经动力学综述
大脑的多尺度动力学建模

大脑的动力学建模可以涵盖不同的时间和空间尺度。例如,微观尺度上神经元层面的神经元细胞膜模型(Hodgkin-Huxley),它描述神经元动作电位的启动和传播;宏观尺度上群体神经元层面的动力学模型(NeuralMassModel)和神经场模型(NeuralFieldModel)等,它描述脑区不同群体神经元的动态演化。上述模型均为平均场模型,可进一步拓展为基于结构耦合的全脑动力学模型,它描述跨脑区之间的信息传递。

动力学模型和机器学习模型的融合

传统动力学模型的表达能力有限,难以准确描述具有个体特异性的大脑动力学过程。将动力学模型和机器学习模型进行融合从而可以得到针对特定个体数据的动力学模型,如Physics-informed neural network以及NeuralODE模型。这样的模型同时具有类似于传统动力学模型的可解释性和源于机器学习的较强表达能力。

动力学模型在脑疾病、脑认知、类脑计算中的应用

广义来说,神经动力学模型可提供一种可控的方式(调整刺激参数和靶点等)激励、抑制或中断大脑网络动态变化,从而实现疾病治疗或脑功能增强。在癫痫研究中,神经动力学模型或可更早地告诉我们大脑已经进入临界状态,从而更好地预测癫痫发作,并发现易受影响的大脑区域,使用药物、神经调控或手术等方法,降低癫痫发作的可能性或者治愈癫痫。已有的工作通过平均场模型揭示了知觉决策过程动力学的机制,还进一步将网络模型拓展到多任务情形,精妙地展示了神经系统通过动力学行为执行认知功能的神经计算机制。同时,神经动力学模型可以为新一代人工神经网络的算法提供指导思想,也可以为下一代专用和通用神经形态芯片提供计算框架。例如当前的一个研究热点为如何利用生物神经系统的实验概念和最新发现,来发展下一代的基于脉冲计算的人工智能。

睡眠调控动力学机制探讨 | 神经动力学模型读书会第七期 主讲人杨冬平

癫痫研究中的神经动力学模型 | 神经动力学模型读书会第九期 主讲人曹淼

相关学习路径

复杂神经动力学:分析与建模

神经元模型:从离子通道到计算

循环神经网络的动力学平均场理论

大尺度脑活动的动力学模型

理解大脑临界与混沌的神经动力学场论模型文献解读

大尺度脑动态建模:从大神经环路到全脑

多尺度脑网络设计规则入门

睡眠调控动力学机制研究