Bernhard Schölkopf
Bernhard Schölkopf 是一位德国计算机科学家(生于1968年2月20日) ,以其在机器学习,尤其是核方法和因果关系方面的工作而闻名。他是蒂宾根马克斯普朗克智能系统研究所(Max Planck Institute for intelligence Systems)所长,领导该所的经验推理研究部门。他还是苏黎世联邦理工学院的附属教授、蒂宾根大学和柏林技术大学的名誉教授,以及欧洲学习和智能系统实验室(ELLIS)的主席。
Bernhard Schölkopf | |
---|---|
Bernhard Schölkopf in 2018 | |
Born | 1968年2月(54岁) |
Alma mater |
|
Known for |
|
Awards | BBVA基础知识前沿奖(2020)
Körber欧洲科学奖(2019) 美国统计协会统计教育因果奖(2018) 莱布尼茨奖(2018) 计算机协会会员(2018) 德国莱翁波迪亚科学院院士(2017) 米尔纳奖(2014) 柏林-勃兰登堡科学与人文学院奖(2012) 马克思普朗克研究奖(2011) 国际模式识别协会 J.K. 阿加沃尔奖(2006) |
Scientific career | |
Institutions | 马克思普朗克智能系统研究所 |
研究领域
Kernel methods 内核方法
Schölkopf 开发的 SVM 方法在当时 MNIST 的模式识别基准测试中取得了世界纪录的性能。[2]随着核主成分分析的引入,Schölkopf 和他的合著者认为支持向量机是一类更大的方法的特例,所有可以用点积表示的算法都可以通过所谓的再生核推广到非线性环境中。[3][4]另一个重要的观察结果是,只要核 Gram 矩阵是正定的,定义核的数据就不需要是向量的。[5]这两种见解共同奠定了核方法领域的基础,包括支持向量机和许多其他算法。核方法是当今教科书中的知识,也是研究和应用中的主要机器学习范式之一。
Schölkopf 开发了内核主成分分析(kernel PCA) ,并将其扩展到提取不变特征和设计不变内核[6][7][8] ,并演示了如何将其他主要的降维分析方法(如 LLE 和 Isomap)视为特例。在与 Alex Smola 和其他人的进一步合作中,他将 SVM 方法扩展到具有预先指定的稀疏度[9]和分位数/支持估计的回归和分类。他证明了一个表示定理,这意味着支持向量机、核主成分分析(kernel PCA)和大多数其他核算法,都是由一个再生核希尔伯特空间中的一个范数正则化的,它们的解决方案都是在训练数据上以核展开的形式出现的,从而将无限维的最佳化问题缩减为有限维的。他与人合作开发了分布方法的内核嵌入来表示 Hilbert Spaces 的概率分布,[11][12][13][14]与夫琅禾费衍射的链接[15]以及独立性测试的应用。[16][17][18]
因果关系
从2005年开始,Schölkopf 将注意力转向因果推理。世界上的因果机制产生统计依赖性作为附带现象,但只有后者被流行的机器学习算法所利用。关于因果结构和机制的知识是有用的,它不仅使我们能够预测来自同一来源的未来数据,而且还能预测系统内干预措施的效果,并促进将发现的规律转移到新的情况。[19]
Schölkopf 和他的同事解决了双变量设置的因果发现问题,并将因果关系与柯氏复杂性联系起来。[25]
大约在2010年,Schölkopf 开始探索如何利用因果关系进行机器学习,利用机制独立性和不变性的假设。他早期关于因果学习的工作在2011年 NeurIPS 上的波斯纳演讲[27]以及2017年 ICML 的主题演讲中向更广泛的机器学习听众展示。他分析了如何利用潜在的因果结构,以使机器学习方法在分布偏移[29][30][31]和系统误差[32]方面更加强大,后者导致发现了一些新的系外行星[33] ,包括 K2-18b,随后发现其大气中含有水蒸气,这是首次在可居住区的系外行星。
教育及就业
舍尔科夫在蒂宾根和伦敦学习数学、物理和哲学。他得到了学生基金会的支持,并获得了莱昂内尔 · 库珀纪念奖的最佳硕士学位。伦敦大学数学系。[34]他获得了物理学文凭,然后搬到了新泽西州的贝尔实验室,在那里他与弗拉基米尔 · 瓦普尼克(Vladimir Vapnik)一起工作,后者成为了他在柏林理工大学(TU Berlin)的博士论文的联合顾问(与斯蒂芬 · 贾尼钦(Stefan Jähnchen)合作)。他的论文在1997年获得了德国信息学协会的年度奖。[35]2001年,在柏林、剑桥和纽约任职之后,他在马克斯 · 普朗克生物控制论研究所(Max Planck Institute for Biology Cybernetics)创建了经验推理部,该研究所成长为机器学习研究的领先中心。2011年,他成为马克斯 · 普朗克智能系统研究所的创始董事。[36][37]
Schölkopf 与 Alex Smola 共同创立了机器学习暑期学校系列。他还共同创办了剑桥-图宾根博士项目[39]和马克斯 · 普朗克-瑞士联邦理工学院学习系统中心。[40]2016年,他与人共同创立了网络谷研究联盟。[41]他参加了 IEEE 全球倡议的“伦理结盟设计”。[42]
Schölkopf 是《机器学习研究杂志》(Journal of Machine Learning Research)的联合主编,该杂志是他帮助创办的,是《机器学习杂志》(Machine Learning)编辑委员会大规模辞职的一部分。他是世界上被引用最多的计算机科学家之一。他实验室的校友包括 Ulrike von Luxburg,Carl Rasmussen,Matthias Hein,Arthur Gretton,Gunnar Rätsch,Matthias Bethge,Stefanie Jegelka,Jason Weston,Olivier Bousquet,Olivier Chapelle,Joaquin Quinonero-Candela 和 Sebastian Nowozin。[44]
个人荣誉
Schölkopf 获得的奖项包括英国皇家学会米尔纳奖,以及与伊莎贝尔 · 盖恩和弗拉基米尔 · 瓦普尼克共同获得的信息和通信技术类 BBVA基金会前沿奖。他是在欧洲工作的第一位获得这个奖项的科学家。[45]
2018年3月,Schölkopf获得了莱布尼茨奖,这是德国最重要的科研促进奖。在国际上他也享有很高的声望,曾获英国皇家学会米尔纳奖。Schölkopf的研究绝不仅仅是灰色的理论。美国企业亚马逊也采用了他的专有技术,并与马克斯-普朗克学会密切合作,以通过人工智能来优化搜索结果的用户友好度。