复杂网络中的因果涌现
因果涌现理论最初是由Erick Hoel提出,使用有效信息来量化离散马尔可夫动力学的因果性强弱。2020 年,Klein 等人尝试将该方法应用于复杂网络中,然后为了量化复杂网络中的因果涌现,需要解决如下问题:定义网络中的动力学,定义有效信息,网络如何粗粒化等问题。
定义网络中的动力学
由于因果涌现理论量化的是系统的动力学,对于网络来说,需要定义网络节点的动力学,可以借助随机游走子定义网络中的马尔可夫链,从而假定网络中的每个节点具有随机游走动力学。
有效信息定义
将随机游走子放在节点上,等价于对节点做干预do(·) ,基于随机游走概率可以定义节点的转移概率矩阵,将网络节点类比系统状态构建网络动力学的有效信息;建立了有效信息与网络连通性的联系。网络中的连通性可通过节点出边与入边的权重的不确定性表征 2 项衡量:1)节点输出的不确定性可通过节点出权的香农熵定义,即 ,因此整个网络的不确定性可通过得到;2)基于网络的出边权重分布计算,反映了确定性如何在网络中分布. 通过这2项就可得到复杂网络中的有效信息定义。 进一步,有效信息可以分解为确定性和简并性。
网络中的粗粒化
为了识别复杂网络中的因果涌现,需要对网络进行粗粒化,然后比较宏观网络与微观网络的有效信息,判断能否发生因果涌现。粗粒化方法包括:贪婪算法、谱分解方法以及机器学习方法。