随机图
在数学领域中,随机图 (Random Graph)是指图上的概率分布的一般术语。随机图可以简单地用概率分布表示,也可以用生成它们的随机过程表示[1][2]。随机图的理论处于图论和概率论的交汇点上。从数学的角度来看,随机图可以用来回答有关典型图的性质的问题。在所有需要对复杂网络进行建模的领域都能看到它的实际应用——由于它反映了在不同领域遇到的不同类型的复杂网络,许多随机图模型就此被人们所熟知。在数学上,随机图几乎完全指的是 ER随机图模型 Erdős–Rényi model。在其他情况下,任何图形模型都可以称为随机图。
模型
从一组 n 个孤立的顶点开始,在它们之间随机添加连续的边,这样就得到一个随机图。这个领域的研究的目的是确定在什么阶段图形的特殊性质可能出现[3]。不同的随机图模型在图上产生不同的概率分布。最常见的研究是由埃德加 · 吉尔伯特提出的,表示[math]\displaystyle{ G(n,M) }[/math] ,其中每个可能的边独立出现的概率为[math]\displaystyle{ 0 \lt p\lt 1 }[/math]。获得任意一个 m 边随机图的概率是 [math]\displaystyle{ p^m (1-p)^(N-m) }[/math] ,记号是 [math]\displaystyle{ N=\tbinom{n}{2} }[/math] 。[4]
一个相关性强的模型,Erdős-Rényi模型表示[math]\displaystyle{ G(n,M) }[/math] ,给每一个正好有M条边的图赋予等概率。当[math]\displaystyle{ 0≤ M ≤ N }[/math]时,[math]\displaystyle{ G(n,M) }[/math]具有 [math]\displaystyle{ \tbinom{N}{M} }[/math] 元素,且每个元素都以概率[math]\displaystyle{ 1/\tbinom{N}{M} }[/math] 出现。后一个模型可以看作是随机图过程[math]\displaystyle{ \tilde{G}_n }[/math]某个特定时间( M )的一个快照,这个时间( M )是从 [math]\displaystyle{ n }[/math] 个顶点开始没有边的一个随机过程,每个步骤均匀地从缺失的边集中选择一个新的边。
如果我们从一个无限的顶点集合开始,然后再次让每个可能的边以概率[math]\displaystyle{ 0\lt p\lt 1 }[/math]独立出现,那么我们得到一个对象 [math]\displaystyle{ G }[/math] 称为无限随机图 Infinite Graph。除了在 [math]\displaystyle{ p = 0 }[/math]或1的平凡情况下,这样的 [math]\displaystyle{ G }[/math] 在大多数情况下肯定具有以下性质:
在 [math]\displaystyle{ v }[/math] 中,给定任何 [math]\displaystyle{ n + m }[/math] 个元素,[math]\displaystyle{ a_1,\ldots, a_n,b_1,\ldots, b_m \in V }[/math] 中有一个顶点[math]\displaystyle{ c }[/math],它与每个 [math]\displaystyle{ a_1,\ldots,a_n }[/math] 相邻,并且不与任何 [math]\displaystyle{ b_1,\ldots,b_m }[/math] 相邻。
结果表明,如果顶点集是可数的,那么在同构 Isomorphism意义下,只有一个图具有这个性质,即 Rado 图。因此,任何可数无限随机图几乎可以肯定是 Rado 图,由于这个原因,有时被简称为随机图。然而,对于不可数图 Uncountable Graph类似的结果是不正确的,不可数图中有许多不同构图 Nonisomorphic Graph满足上述性质。
另一个模型,概括了吉尔伯特的随机图模型,是随机点积模型 Random Dot-product Model。一个随机点积图 Random Dot-product Graph 将每个顶点与一个实向量相关联。任意顶点 [math]\displaystyle{ u }[/math] 和 [math]\displaystyle{ v }[/math]之间的边 [math]\displaystyle{ uv }[/math] 的概率是它们各自向量的点积 [math]\displaystyle{ u·v }[/math] 的某个函数。
网络转移矩阵 NetWork Probability Matrix通过边概率对随机图进行建模,这些边概率代表给定的边存在一个特定的时间段的概率。这个模型可以扩展到有向和无向,加权和无权,以及静态或动态的图形结构。
对于 M ≃ pN,其中 N 是可能的最大边数,两个最广泛使用的模型,[math]\displaystyle{ G(n,M) }[/math]和 [math]\displaystyle{ G(n,p) }[/math]在大多数情况下是可互换的[5]。
随机正则图 Random Regular Graph是一种特殊情况,其性质可能与一般随机图不同。
一旦我们有了一个随机图的模型,图上的每个函数都变成了一个随机变量。对这个模型的研究是为了确定,或者至少估计一个属性可能发生的概率。
术语
在随机图的上下文中,“几乎每一个”这个术语指的是一系列空间和概率,使得出错概率趋于零。
性质
随机图理论研究随机图的典型性质,即从特定分布中抽取的图的高概率性质。例如,我们可以要求一个给定的值 [math]\displaystyle{ n }[/math] 和 [math]\displaystyle{ p }[/math]来表示[math]\displaystyle{ G(n,p) }[/math] 连接的概率。在研究这些问题时,研究人员往往集中在随机图的趋近行为上——各种概率收敛到的值变得非常大。渗流理论 Percolation Theory刻画了随机图,特别是无穷大图的连通性 Connectedness。
渗流 Percolation 与图形(也称为网络)的鲁棒性 Robustness有关。给定一个随机图形,其中的节点是 [math]\displaystyle{ n }[/math] 和一个平均度 [math]\displaystyle{ \langle k\rangle }[/math] 。接下来我们随机移除一部分概率为 [math]\displaystyle{ 1-p }[/math] 的节点,只留下一部分概率为 [math]\displaystyle{ p }[/math] 的节点。存在一个临界渗透阈值 Critical Percolation Threshold[math]\displaystyle{ p_c=\tfrac{1}{\langle k\rangle} }[/math],当低于这个临界渗透阈值,网络变得支离破碎,而高于临界渗透阈值 [math]\displaystyle{ p_c }[/math] 的网络则存在一个巨大的连接元件 Connected Component(图论)[6][7]。
局部渗滤 Localized Percolation指的是去除一个节点的邻居、次近邻等。直到网络中概率为 [math]\displaystyle{ 1-p }[/math] 的一部分节点被移除。结果表明,对于服从泊松分布的随机图,其度分布为 [math]\displaystyle{ p_c=\tfrac{1}{\langle k\rangle} }[/math] ,和随机删除是一样的。对于其他类型的度分布[math]\displaystyle{ p_c }[/math],局部攻击和随机攻击是不同的。[8](阈值函数 Threshold Functions, [math]\displaystyle{ \tilde G }[/math] 的演化)
随机图在概率方法中得到了广泛的应用,它试图证明具有一定性质的图的存在性。通过 正则引理 Szemerédi Regularity Lemma,随机图上一个性质的存在常常意味着几乎所有图上该性质的存在。
在随机正则图中,[math]\displaystyle{ G(n,r-reg) }[/math] 是 [math]\displaystyle{ r=r(n) }[/math]的[math]\displaystyle{ r- }[/math]正则图的集合,其中 [math]\displaystyle{ n }[/math] 和 [math]\displaystyle{ m }[/math] 是自然数,[math]\displaystyle{ 3 \le r\lt n }[/math] ,[math]\displaystyle{ rn = 2m }[/math] 是偶数。
在 [math]\displaystyle{ G^n }[/math] 中,图 [math]\displaystyle{ G }[/math] 的度序列仅取决于集合中的边数。
- [math]\displaystyle{ V_n^{(2)} = \left \{ij \ : \ 1 \leq j \leq n, i \neq j \right \} \subset V^{(2)}, \qquad i=1, \cdots, n. }[/math]
如果随机图中的边 [math]\displaystyle{ M }[/math],[math]\displaystyle{ G_M }[/math] 大到足以确保几乎每个 [math]\displaystyle{ G_M }[/math] 的最小阶数至少为1,那么几乎每个 [math]\displaystyle{ G }[/math] 是连通的,如果 [math]\displaystyle{ n }[/math] 是偶数,则几乎每个 [math]\displaystyle{ G_M }[/math] 都有一个完美匹配 Perfect Matching。特别是,在几乎每个随机图中,最后一个孤立点消失的那一刻,图会变连通。
几乎每个偶数顶点上的最小度提高到1的图或稍大于 [math]\displaystyle{ \tfrac{n}{4}\log(n) }[/math] 边且概率接近1的随机图都能确保图有完全匹配 Complete Matching,但最多只有一个顶点。
对于某些常数 [math]\displaystyle{ c }[/math] ,几乎所有带有 [math]\displaystyle{ n }[/math] 顶点和至少 [math]\displaystyle{ cn\log(n) }[/math] 边的标记图都是 哈密尔顿环 Hamiltonian Cycle的。在概率趋于1的情况下,将最小度增加到2的特殊边会使图成为哈密尔顿图。
在图变换下,随机图的性质可以改变或保持不变。例如,Mashaghi A.等人证明了将随机图转换为其 边-对偶图 Edge-Dual Graphs(或 线图 Liner Graph)的变换会产生一个度分布几乎相同,但具有 度相关性 Degree Correlations 和显著更高的 聚类系数 Clustering Coefficent的图的集合。[9]
着色
给定一个 n 阶随机图 G,其顶点 V(G) = {1,... ,n } ,通过关于颜色数的贪婪算法 Greedy Algorithm,可以用颜色1,2... (如果顶点1与顶点2不相邻,则顶点1与顶点2为染相同的颜色,否则染不同的颜色,以此类推。)
给定一个 q 颜色的随机图的真染色数,称为它的染色多项式 Chormatic Polynomial(到目前为止还没有确定的正式名称)。利用符号模式匹配算法 Algorithm Based On Symbolic Pattern Matching ,对参数为 n 、边数为 m 或连接概率为 p 的随机图的染色多项式零点的标度进行了实验研究。[10]
随机树图
随机树是由随机过程组成的树状图。在 n 阶和 M(n)大小的随机图的大范围内,k 阶树分量个数的分布是渐近泊松的。随机树的类型包括均匀生成树 Uniform Spanning Tree、随机最小生成树 Random Minimal Tree、随机二叉树 Random Binary Tree、树、快速检索随机树 Rapidly Exploring Random Tree、布朗树 Brownian Tree和随机森林 Random Forest。
条件随机图
考虑一个给定的随机图模型定义在概率空间上[math]\displaystyle{ (\Omega,\mathcal{F},P) }[/math] ,并且让 [math]\displaystyle{ \mathcal{P}(G) : \Omega \rightarrow R^{m} }[/math] 是一个值是实数的函数,它在 [math]\displaystyle{ \Omega }[/math] 中为每个图赋值一个 m 属性的向量。
对于 [math]\displaystyle{ R^{m} }[/math] 中的一个固定的 [math]\displaystyle{ \mathbf{p} }[/math] ,条件随机图是这样的模型,在这个模型中,机率量测 [math]\displaystyle{ p }[/math] 给所有图分配零概率,例如“ [math]\displaystyle{ \mathcal{P}(G)\neq\mathbf{p} }[/math] 。
特殊情况是条件均匀随机图 Conditionally Uniform Graph,其中 [math]\displaystyle{ p }[/math] 给所有具有指定性质的图赋予相等的概率。它们可以被看作是 Erdős–Rényi 模型 G(n,m)的一个推广,当条件信息不一定是边的个数 M,而是其他任意图性质 [math]\displaystyle{ \mathcal{P}(G) }[/math] 时。在这种情况下,很少有分析结果可用,就需要通过模拟来获得平均性质的经验分布。
相互依存图
在相互依存图中,一个网络(图)中的节点依赖于其他网络来工作。因此,一个或多个图中的故障会导致图之间的级联故障 Cascading Failures,从而引起网络突然崩溃。[11][12]
历史
最早使用随机图模型的是海伦·霍尔·詹宁斯 Helen Hall Jennings和雅各布·莫雷诺 Jacob Moreno,他们在1938年提出了一个“偶然社会记录模型”(一个有向的ER模型)[13] ,用来比较他们的网络数据中的回传链接的比例和随机模型。另一个被称为“随机网络 Random Net”的随机图模型应用是1951年 Solomonoff 和 Rapoport 使用的有向图模型,这些有向图具有固定的出度,并且随机选择附加到其他顶点。[14]
随机图的ER模型是由Paul Erdős和Alfréd Rényi于1959年发表的论文《随机图论》中首次提出的,Gilbert 在他的论文《随机图论》中独立定义了这一模型。[15][16]
参见
- 玻色-爱因斯坦凝聚 Bose–Einstein Condensation: a network theory approach
- 空腔法 Cavity Method
- 复杂网络
- Dual-phase Evolution
- ER随机图模型
- 指数随机图模型 Exponential Random Graph Model
- 图论
- 相互依存图 Interdependent Networks
- 网络科学
- 渗流 Percolation
- 渗流理论 Percolation Theory
- 正则图 Regular Graph
- 无标度网络
- 半线性相应 Semilinear Response
- 随机块体模型 Stochastic Block Model
- Lanchinetti Fortunato Radicchi基准
参考文献
- ↑ Bollobás, Béla (2001). Random Graphs (2nd ed.). Cambridge University Press.
- ↑ Frieze, Alan; Karonski, Michal (2015). Introduction to Random Graphs. Cambridge University Press.
- ↑ Béla Bollobás, Random Graphs, 1985, Academic Press Inc., London Ltd.
- ↑ Béla Bollobás, Probabilistic Combinatorics and Its Applications, 1991, Providence, RI: American Mathematical Society.
- ↑ Bollobas, B. and Riordan, O.M. "Mathematical results on scale-free random graphs" in "Handbook of Graphs and Networks" (S. Bornholdt and H.G. Schuster (eds)), Wiley VCH, Weinheim, 1st ed., 2003
- ↑ Newman, M. E. J. (2010). Networks: An Introduction. Oxford.
- ↑ Reuven Cohen and Shlomo Havlin (2010). Complex Networks: Structure, Robustness and Function. Cambridge University Press. http://havlin.biu.ac.il/Shlomo%20Havlin%20books_com_net.php.
- ↑ Shao, Shuai; Huang, Xuqing; Stanley, H Eugene; Havlin, Shlomo (2015). "Percolation of localized attack on complex networks". New Journal of Physics. 17 (2): 023049. arXiv:1412.3124. Bibcode:2015NJPh...17b3049S. doi:10.1088/1367-2630/17/2/023049. ISSN 1367-2630.
- ↑ Ramezanpour, A.; Karimipour, V.; Mashaghi, A. (2003). "Generating correlated networks from uncorrelated ones". Phys. Rev. E. 67 (46107): 046107. arXiv:cond-mat/0212469. Bibcode:2003PhRvE..67d6107R. doi:10.1103/PhysRevE.67.046107. PMID 12786436.
- ↑ Van Bussel, Frank; Ehrlich, Christoph; Fliegner, Denny; Stolzenberg, Sebastian; Timme, Marc (2010). "Chromatic Polynomials of Random Graphs". J. Phys. A: Math. Theor. 43 (17): 175002. arXiv:1709.06209. Bibcode:2010JPhA...43q5002V. doi:10.1088/1751-8113/43/17/175002.
- ↑ Buldyrev, Sergey V.; Parshani, Roni; Paul, Gerald; Stanley, H. Eugene; Havlin, Shlomo (2010). "Catastrophic cascade of failures in interdependent networks". Nature. 464 (7291): 1025–1028. arXiv:1012.0206. Bibcode:2010Natur.464.1025B. doi:10.1038/nature08932. ISSN 0028-0836. PMID 20393559.
- ↑ Gao, Jianxi; Buldyrev, Sergey V.; Stanley, H. Eugene; Havlin, Shlomo (2011). "Networks formed from interdependent networks". Nature Physics. 8 (1): 40–48. Bibcode:2012NatPh...8...40G. CiteSeerX 10.1.1.379.8214. doi:10.1038/nphys2180. ISSN 1745-2473.
- ↑ Moreno, Jacob L; Jennings, Helen Hall (Jan 1938). "Statistics of Social Configurations". Sociometry. 1 (3/4): 342–374. doi:10.2307/2785588.
- ↑ Solomonoff, Ray; Rapopst, Anatol (June 1951). "Connectivity of random nets". Bulletin of Mathematical Biophysics. 13 (2): 107–117. doi:10.1007/BF02478357.
- ↑ Erdős, P. Rényi, A (1959) "On Random Graphs I" in Publ. Math. Debrecen 6, p. 290–297 [1]
- ↑ Gilbert, E. N. (1959), "Random graphs", Annals of Mathematical Statistics, 30 (4): 1141–1144, doi:10.1214/aoms/1177706098.
编者推荐
集智相关文章
ER随机图模型
随机图(random graph),顾名思义,是由随机过程产生的图,具有不确定性。这一理论处于图论和概率论的交叉地带,主要研究经典随机图的性质。
集智相关课程
巴拉巴西网络科学
本课程中,我们邀请了汪小帆、赵海兴、许小可、史定华、陈清华、张江、狄增如、陈关荣、樊瑛、刘宗华这十个来自六大不同高校、在网络科学领域耕耘许久的教授作为导师,依据教材框架,各有侧重地为我们共同勾勒出整个学科的美丽图景,展示这个学科的迷人魅力,指引这个学科的灿烂未来。
复杂网络的基本模型
本课程中,将详细介绍复杂网络的四个基本模型:规则网、随机图、小世界网络、Scale-Free 网络。
本中文词条由923397935翻译,CecileLi审校,打豆豆欢迎在讨论页面留言。
本词条内容源自公开资料,遵守 CC3.0协议。