讨论:NIS+
基于信息分解的因果涌现识别
- 该方法只是基于互信息计算没有考虑因果,
Rosas他们也声称是因果涌现,是因为他们是基于格兰杰因果的。所以不能说它们完全没考虑因果,只是要比较格兰杰因果和Judea Pearl的因果。
(已改,神经网络框架是指?图片是这个吗?)
YMZ: 不是这张图,而是Learning Causally Emergent Representations这篇文章里的神经网络框架。不过我看了一下,因果涌现词条那里也写的非常简单,那你这里就不放图了吧,一句话说明他们也用了机器学习框架,就不提他那些数学符号了。然后这句话里引上参考文献Learning Causally Emergent Representations(已改:Rosas等学者利用机器学习框架【6】,通过信息分解来识别量化因果涌现,但是信息分解框架中定义的信息原子难以计算,——这篇文章的第一作者是Kaplanis要不要放在讲Kaplanis那里)
YMZ:要的,机器学习框架放到结尾来介绍,而不是开头
PLL:需要指出的是,Hoel的方法基于Judea Pearl因果,而此方法是基于格兰杰因果,利用机器学习框架,计算互信息的组合,没有引入do干预。这样呢?
YMZ:开头再加上 Rosas等人通过信息分解框架给出了和Hoel等人不同的对因果涌现的新定义 这一个信息点。其他没啥问题了。
NIS系列
- 虽然可以通过两个阶段得到结果,但是NIS没有真正地最大化有效信息。由于此方法的数学形式是一个泛函问题,无法直接进行优化,在NIS+中,将通过计算变分下界解决泛函问题。
我发现这里这样简单讲很难看懂,要不然这里就不放缺陷了,后面讲缺陷的时候统一讲。(好哒,识别这里要不要只介绍输入、输出、框架,这三个部分,两阶段也在下面解释,这里只说明没有最大化)
YMZ:可以的
PLL:识别NIS已改
机器学习领域的分布外泛化问题
- 以一个狗识别的图像判别任务为例。训练图像的背景一般是在草地上、少数是在地面上,且图像中,基本可以看见狗的整个身子。经过大量数据的训练之后,如果给模型一个在草地上奔跑的狗的图像,那么模型大概95%以上会判定这是狗;如果给一张在水泥地上,且遮挡了狗部分身体的图像,那么模型可能有一半的概率可以识别出图像中的动物是狗;如果给模型一张狗在游泳池中,只露出头的图像,那么模型大概率不能识别出来图像中的是狗。
这个例子本身叙述可以再简洁一些
PLL:OK\(^o^)/~,已改,其他的呢?