地球系统工程与管理

此词条由自生成读书会词条梳理志愿者吕奥博翻译审校,未经专家审核,带来阅读不便,请见谅。

Earth systems engineering and management (ESEM) is a discipline used to analyze, design, engineer and manage complex environmental systems. It entails a wide range of subject areas including anthropology, engineering, environmental science, ethics and philosophy. At its core, ESEM looks to "rationally design and manage coupled human–natural systems in a highly integrated and ethical fashion".[1] ESEM is a newly emerging area of study that has taken root at the University of Virginia, Cornell and other universities throughout the United States, and at the Centre for Earth Systems Engineering Research (CESER) at Newcastle University in the United Kingdom. Founders of the discipline are Braden Allenby and Michael Gorman.

地球系统工程与管理(ESEM)是一门用于分析、设计、工程和管理复杂环境系统的学科。它涉及领域广泛,包括人类学、工程学、环境科学、伦理学和哲学。ESEM的核心是“以高度整合和道德的方式合理地设计并管理人与自然的耦合系统”。[1]ESEM是一个新兴的研究领域,开设在在弗吉尼亚大学、康奈尔等美国大学以及英国纽卡斯尔大学地球系统工程研究中心(CESER)。该学科的创始人是布莱登·阿伦比和迈克尔·戈尔曼。

Introduction to ESEM

ESEM简介

For centuries, mankind has been utilizing the earth and its natural resources to advance civilization and develop technology. "As a principle 模板:Sic result of Industrial Revolutions and associated changes in human demographics, technology systems, cultures, and economic systems have been the evolution of an Earth in which the dynamics of major natural systems are increasingly dominated by human activity".[1]

几个世纪以来,人类一直在利用地球及其自然资源来推进文明和发展技术。“工业革命、人类人口、技术系统、文化和经济系统相关变化的后果是地球的演变,其中自然系统的动态变化越来越受人类活动的支配影响。”。[1]

In many ways, ESEM views the earth as a human artifact. "In order to maintain continued stability of both natural and human systems, we need to develop the ability to rationally design and manage coupled human-natural systems in a highly integrated and ethical fashion- an Earth Systems Engineering and Management (ESEM) capability".[1]

在许多方面,ESEM将地球视为人造物。“为了保持自然和人类系统的持续稳定,我们需要发展以高度综合和合乎道德的方式合理地设计并管理人与自然的耦合系统——提高地球系统工程管理能力”。[1]

ESEM has been developed by a few individuals. One of particular note is Braden Allenby. Allenby holds that the foundation upon which ESEM is built is the notion that "the Earth, as it now exists, is a product of human design".[2] In fact there are no longer any natural systems left in the world, "there are no places left on Earth that don't fall under humanity's shadow".[3] "So the question is not, as some might wish, whether we should begin ESEM, because we have been doing it for a long time, albeit unintentionally.

ESEM是由少数人发展起来的,其中特别值得一提的是布莱登·艾伦比。艾伦比认为建立ESEM的基础是“如我们所见,地球是人类设计的产物”。[2]事实上,世界上已经没有任何自然系统了,“地球上没有不在人类阴影下的地方”。[3]“因此,问题不是一些人所想的那样:我们是否应该发展ESEM,而是我们已经无意间发展了很长时间。

The issue is whether we will assume the ethical responsibility to do ESEM rationally and responsibly".[2] Unlike the traditional engineering and management process "which assume a high degree of knowledge and certainty about the systems behavior and a defined endpoint to the process," ESEM "will be in constant dialog with [the systems], as they – and we and our cultures – change and coevolve together into the future".[2] ESEM is a new concept, however there are a number of fields "such as industrial ecology, adaptive management, and systems engineering that can be relied on to enable rapid progress in developing" ESEM as a discipline.[2]

当前的问题是我们是否将负责任地进行ESEM。[2]与传统的“工程和管理过程”不同,传统的工程和管理过程假定对系统行为有高度的了解和确定性,并确定系统发展的终点,但ESEM需要时刻与系统互动,随着他们(以及我们和文化)一起改变和共同进化。[2]ESEM是一个新概念,但已有许多相关领域,如工业生态学、适应性管理和系统工程,我们可以依靠这些领域快速发展ESEM成为一门学科。[2]

The premise of ESEM is that science and technology can provide successful and lasting solutions to human-created problems such as environmental pollution and climate-change. This assumption has recently been challenged in Techno-Fix: Why Technology Won't Save Us or the Environment.[4]

ESEM可行的前提是,科学和技术可以为环境污染和气候变化等人为问题提供成功和持久的解决方案。但这一假设最近在Techno-Fix中受到了挑战。[4]

Topics

主题

Adaptive management

Adaptive management is a key aspect of ESEM. Adaptive management is a way of approaching environmental management. It assumes that there is a great deal of uncertainty in environmental systems and holds that there is never a final solution to an earth systems problem. Therefore, once action has been taken, the Earth Systems Engineer will need to be in constant dialogue with the system, watching for changes and how the system evolves. This way of monitoring and managing ecosystems accepts nature's inherent uncertainty and embraces it by never concluding to one certain cure to a problem.

适应性管理

适应性管理是ESEM的一个主要研究内容。适应性管理是一种接近环境管理的方式。它假设环境系统中存在大量不确定性,并认为地球系统问题永远不会有最终解决方案。因此,一旦采取行动,地球系统工程师将需要与系统进行持续对话,观察变化和系统如何演变。这种监测和管理生态系统的方式接受了大自然固有的不确定性,并接受永远不能找到解决问题的办法。

Earth systems engineering

Earth systems engineering is essentially the use of systems analysis methods in the examination of environmental problems. When analyzing complex environmental systems, there are numerous data sets, stakeholders and variables. It is therefore appropriate to approach such problems with a systems analysis method. Essentially there are "six major phases of a properly-conducted system study".[5] The six phases are as follows:

  1. Determine goals of system
  2. Establish criteria for ranking alternative candidates
  3. Develop alternatives solutions
  4. Rank alternative candidates
  5. Iterate
  6. Act

地球系统工程

地球系统工程本质上是利用系统分析方法来研究环境问题。在分析复杂的环境系统时,有许多数据集、利益相关者和变量。因此,用系统分析方法处理此类问题是合适的。基本上,正确进行的系统研究可分为六个主要阶段。[5] 六个阶段如下:

  1. 确定系统的目标
  2. 建立备选方案排名标准
  3. 开发替代解决方案
  4. 对备选方案进行排名
  5. 迭代
  6. 实施

Part of the systems analysis process includes determining the goals of the system. The key components of goal development include the development of a Descriptive Scenario, a Normative Scenario and Transitive Scenario.[5] Essentially, the Descriptive Scenario "describe[s] the situation as it is [and] tell[s] how it got to be that way" (Gibson, 1991). Another important part of the Descriptive Scenario is how it "point[s] out the good features and the unacceptable elements of the status quo".[5] Next, the Normative Scenario shows the final outcome or the way the system should operate under ideal conditions once action has been taken.[5] For the earth systems approach, the "Normative Scenario" will involve the most complicated analysis. The Normative Scenario will deal with stakeholders, creating a common trading zone or location for the free exchange of ideas to come up with a solution of where a system may be restored to or just how exactly a system should be modified. Finally the Transitive scenario comes up with the actual process of changing a system from a Descriptive state to a Normative state. Often, there is not one final solution, as noted in adaptive management. Typically an iterative process ensues as variables and inputs change and the system coevolves with the analysis.

系统分析过程包括确定系统的目标。目标制定包括当前场景描述标准场景设计过渡场景分析[5] 从本质上讲,当前场景描述描述现状,并告诉它是如何变成这样的。当前场景描述的另一个重要部分是如何指出现状的良好特征和不可接受的方面。[5]接下来,准场景设计显示了一旦采取行动,系统在理想条件下的最终结果或运行方式。[5]对于地球系统方法而言,标准场景设计将涉及最复杂的分析。标准场景设计阶段将与利益相关者打交道,创建一个共同的贸易区或地点,以便顺畅交流,从而提出解决方案,解决系统可能恢复到的位置或系统应该如何修改的问题。最后,过渡场景分析给出了将系统从描述状态更改为规范状态的实际过程。通常,没有一个最终的解决方案,如适应性管理中所述。通常,当变量和输入发生变化,系统与分析协同工作时,就会出现一个迭代过程。

Environmental science

When examining complex ecosystems there is an inherent need for the earth systems engineer to have a strong understanding of how natural processes function. A training in Environmental Science will be crucial to fully understand the possible unintended and undesired effects of a proposed earth systems design. Fundamental topics such as the carbon cycle or the water cycle are pivotal processes that need to be understood.

环境科学

在研究复杂的生态系统时,地球系统工程师有一个内在的需求,即对自然过程如何运作有一个深刻的理解。环境科学方面的培训对于充分理解拟议的地球系统设计可能产生的非预期及不期望的影响至关重要。碳循环或水循环等基本主题是需要理解的关键过程。

Ethics and sustainability

At the heart of ESEM is the social, ethical and moral responsibility of the earth systems engineer to stakeholders and to the natural system being engineered, to come up with an objective Transitive and Normative scenario. "ESEM is the cultural and ethical context itself".[2] The earth systems engineer will be expected to explore the ethical implications of proposed solutions.

道德与可持续性

ESEM的核心是地球系统工程师对利益相关者和被设计的自然系统的社会、伦理和道德责任,以及提出一个客观的标准场景过渡场景。“ESEM本身就是文化和伦理背景”。[2]地球系统工程师需要探索提议方案的伦理问题。

"The perspective of environmental sustainability requires that we ask ourselves how each interaction with the natural environment will affect, and be judged by, our children in the future" ".[6] "There is an increasing awareness that the process of development, left to itself, can cause irreversible damage to the environment, and that the resultant net addition to wealth and human welfare may very well be negative, if not catastrophic".[6] With this notion in mind, there is now a new goal of sustainable environment-friendly development.[6] Sustainable development is an important part to developing appropriate ESEM solutions to complex environmental problems.

“从环境可持续性的角度来看,我们需要扪心自问,与自然环境的每一次互动将如何影响我们的后代,并让他们在未来做出判断。”[6]人们越来越意识到,发展进程本身可能对环境造成不可逆转的破坏,由此带来的财富和人类福利的净增加很可能是负的。[6]考虑到这个概念,我们的心目标是可持续的环境友好型发展。[6]可持续发展是为复杂的环境问题制定适当的ESEM解决方案的重要组成部分。

Industrial ecology

Industrial ecology is the notion that major manufacturing and industrial processes need to shift from open loop systems to closed loop systems. This is essentially the recycling of waste to make new products. This reduces refuse and increases the effectiveness of resources. ESEM looks to minimize the impact of industrial processes on the environment, therefore the notion of recycling of industrial products is important to ESEM.

工业生态学

工业生态学的概念是,主要的制造业和工业过程需要从开环系统转向闭环系统。这实质上是废物的回收利用,以制造新产品。这减少了垃圾,提高了资源的有效性。ESEM希望将工业过程对环境的影响降至最低,因此工业产品回收的概念对ESEM很重要。

Case study: Florida Everglades

The Florida Everglades system is a prime example of a complex ecological system that underwent an ESEM analysis.

案例研究:佛罗里达大沼泽地

佛罗里达大沼泽地是一个经过ESEM分析的复杂生态系统典型案例。

Background

The Florida Everglades is located in southern Florida. The ecosystem is essentially a subtropical fresh water marsh composed of a variety of flora and fauna.[7] Of particular note is the saw grass and ridge slough formations that make the Everglades unique.[8] Over the course of the past century mankind has had a rising presence in this region. Currently, all of the eastern shore of Florida is developed and the population has increased to over 6 million residents.[7] This increased presence over the years has resulted in the channeling and redirecting of water from its traditional path through the Everglades and into the Gulf of Mexico and Atlantic Ocean. With this there have been a variety of deleterious effects upon the Florida Everglades.

背景

佛罗里达大沼泽地位于佛罗里达州南部。该生态系统本质上是一个亚热带淡水沼泽,由多种动植物组成。[7]特别值得一提的是锯草和山脊泥沼这使得大沼泽地独一无二。[8] 在过去的一个世纪里,周边人口数量与日俱增。目前,佛罗里达州东海岸全部开发,人口已增至600多万。多年来,人口增加导致水从其传统路径通过大沼泽地流入墨西哥湾和大西洋。这对佛罗里达大沼泽地造成了各种有害影响。

Descriptive scenario

By 1993, the Everglades had been affected by numerous human developments. The water flow and quality had been affected by the construction of canals and levees, to the series of elevated highways running through the Everglades to the expansive Everglades Agricultural Area that had contaminated the Everglades with high amounts of nitrogen.[7] The result of this reduced flow of water was dramatic. There was a 90 - 95% reduction in wading bird populations, declining fish populations and salt water intrusion into the ecosystem.[8] If the Florida Everglades were to remain a US landmark, action needed to be taken.

当前场景描述

1993年,大沼泽地受到了无数人类发展的影响。水流和水质受到了运河和堤坝建设、穿过大沼泽地的一系列高架公路以及大沼泽地农业区的影响,而大沼泽地农业区已被大量氮污染。[7] 水流减少的结果是惊人的。涉水鸟类数量减少了90-95%,鱼类数量减少以及盐水入侵生态系统。[8]如果佛罗里达大沼泽地要继续成为美国的地标,就必须采取行动。

Normative scenario

It was in 1993 that the Army Corps of Engineers analyzed the system.[7] They determined that an ideal situation would be to "get the water right".[7] In doing so there would be a better flow through the Everglades and a reduced number of canals and levees sending water to tide.

标准场景设计

1993年,美国陆军工程兵团对该系统进行了分析。[7]他们决定,理想的情况是“正确用水”。[7]这样一来,大沼泽地的水流会更好,运河和堤坝的数量也会减少,从而使水流退潮。

Transitive scenario

It was from the development of the Normative Scenario, that the Army Corps of Engineers developed CERP, the Comprehensive Everglades Restoration Plan.[7] In the plan they created a time line of projects to be completed, the estimated cost and the ultimate results of improving the ecosystem by having native flora and fauna prosper.[7] They also outline the human benefits of the project. Not only will the solution be sustainable, as future generations will be able to enjoy the Everglades, but the correction of the water flow and through the creation of storage facilities will reduce the occurrence of droughts and water shortages in southern Florida.[7]

过渡场景分析

美国陆军工程兵团正是从规范场景的发展中制定了CERP,即大沼泽地综合修复计划。[7]在该计划中,他们制定了待完成项目的时间表、估计成本以及通过让本地动植物繁衍来改善生态系统的最终结果。[7]他们还概述了该项目对人类的好处。解决方案不仅是可持续的,因为子孙后代将能够享受大沼泽地,而且水流的修正和储存设施的建立将减少佛罗里达州南部干旱和缺水的发生。[7]

See also

另见

  • 设计评论
  • 环境管理
  • 工业生态学
  • 可持续性
  • 系统工程

Publications

  • Allenby, B. R. (2000). Earth systems engineering: the world as human artifact. Bridge 30 (1), 5–13.
  • Allenby, B. R. (2005). Reconstructing earth: Technology and environment in the age of humans. Washington, DC: Island Press. From https://www.loc.gov/catdir/toc/ecip059/2005006241.html
  • Allenby, B. R. (2000, Winter). Earth systems engineering and management. IEEE Technology and Society Magazine, 0278-0079(Winter) 10-24.
  • Davis, Steven, et al. Everglades: The Ecosystem and Its Restoration. Boca Raton: St Lucie Press, 1997.
  • "Everglades." Comprehensive Everglades Restoration Plan. 10 April 2004. https://web.archive.org/web/20051214102114/http://www.evergladesplan.org/
  • Gibson, J. E. (1991). How to do A systems analysis and systems analyst decalog. In W. T. Scherer (Ed.), (Fall 2003 ed.) (pp. 29–238). Department of Systems and Information Engineering: U of Virginia. Retrieved October 29, 2005,
  • Gorman, Michael. (2004). Syllabus Spring Semester 2004. Retrieved October 29, 2005 from https://web.archive.org/web/20110716231016/http://repo-nt.tcc.virginia.edu/classes/ESEM/syllabus.html
  • Hall, J.W. and O'Connell, P.E. (2007). Earth Systems Engineering: turning vision into action. Civil Engineering, 160(3): 114-122.
  • Newton, L. H. (2003). Ethics and sustainability: Sustainable development and the moral life. Upper Saddle River, N.J.: Prentice Hall.

出版物

  • 艾伦比 B.R. (2000)。地球系统工程: 作为人造物的世界。桥30(1) ,5-13。
  • 艾伦比,B.R. (2005)。重建地球: 人类时代的技术与环境。华盛顿特区: 岛屿出版社。https://www.loc.gov/catdir/toc/ecip059/2005006241.html
  • 艾伦比,B.R. (2000,Winter)。地球系统工程与管理。IEEE 技术与社会杂志,0278-0079(Winter)10-24。
  • 戴维斯、史蒂文等人。大沼泽地: 生态系统及其恢复。博卡拉顿: 圣露西出版社,1997年。
  • “大沼泽地”大沼泽地综合恢复计划。2004年4月10日 https://web.archive.org/web/20051214102114/http://www.evergladesplan.org/
  • 吉布森,J.E. (1991)。如何成为系统分析和系统分析师的十大问题。在W. T. 谢勒(Ed.) ,(2003年秋季出版)(pp.29–238).系统与信息工程系: 弗吉尼亚大学。29,2005,
  • Gorman,Michael.(2004).Syllabus Spring Semester 2004.2005年10月29日, https://web.archive.org/web/20110716231016/http://repo-nt.tcc.virginia.edu/classes/esem/syllabus.html。
  • 奥康纳 J.W. 。(2007).地球系统工程: 将愿景转化为行动。土木工程,160(3) : 114-122。
  • 牛顿,l. H. (2003)。伦理与可持续性: 可持续发展与道德生活。新泽西州上萨德尔河: Prentice Hall。

References

参考

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Gorman, Michael. (2004). Syllabus Spring Semester 2004. Retrieved October 29, 2005 from http://repo-nt.tcc.virginia.edu/classes/ESEM/syllabus.html -{zh-cn:互联网档案馆; zh-tw:網際網路檔案館; zh-hk:互聯網檔案館;}-存檔,存档日期2011-07-16..
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Allenby, B. R. (2005). Reconstructing earth: Technology and environment in the age of humans. Washington, DC: Island Press. From https://www.loc.gov/catdir/toc/ecip059/2005006241.html -{zh-cn:互联网档案馆; zh-tw:網際網路檔案館; zh-hk:互聯網檔案館;}-存檔,存档日期2007-02-11.
  3. 3.0 3.1 Allenby, B. R. (2000, Winter). Earth systems engineering and management. IEEE Technology and Society Magazine, 0278-0079(Winter) 10-24.
  4. 4.0 4.1 Huesemann, Michael H., and Joyce A. Huesemann (2011). Technofix: Why Technology Won't Save Us or the Environment -{zh-cn:互联网档案馆; zh-tw:網際網路檔案館; zh-hk:互聯網檔案館;}-存檔,存档日期2019-05-16., New Society Publishers, Gabriola Island, British Columbia, Canada, .
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 * Gibson, J. E. (1991). How to do A systems analysis and systems analyst decalog. In W. T. Scherer (Ed.), (Fall 2003 ed.) (pp. 29-238). Department of Systems and Information Engineering: U of Virginia. Retrieved October 29, 2005
  6. 6.0 6.1 6.2 6.3 6.4 6.5 Newton, L. H. (2003). Ethics and sustainability: Sustainable development and the moral life. Upper Saddle River, N.J.: Prentice Hall.
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 7.13 7.14 "Everglades." Comprehensive Everglades Restoration Plan. 10 April 2004. "Archived copy". Archived from the original on 2005-12-14. Retrieved 2005-12-14.{{cite web}}: CS1 maint: archived copy as title (link)
  8. 8.0 8.1 8.2 8.3 (Davis, 1997).

External links

外部链接

  • 弗吉尼亚大学2004年春季课程
  • 弗吉尼亚大学2004年春季课程
  • 弗吉尼亚大学2007年春季课程
  • 艾伦比讲授课程
  • 地球系统工程研究中心,纽卡斯尔大学