“沙堆模型”的版本间的差异

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索
Zcy讨论 | 贡献
第1行: 第1行:
此词条暂由水流心不竞初译,未经审校,带来阅读不便,请见谅。
+
此词条暂由水流心不竞初译,未经审校,带来阅读不便,请见谅。此词条由Zcy初步审校。
 
+
{{short description|Cellular automaton}}
 
[[File:Sandpile identity 300x205.png|upright=1.25|thumb|The identity element of the sandpile group of a rectangular grid. Yellow pixels correspond to vertices carrying three particles, lilac to two particles, green to one, and black to zero.]]
 
[[File:Sandpile identity 300x205.png|upright=1.25|thumb|The identity element of the sandpile group of a rectangular grid. Yellow pixels correspond to vertices carrying three particles, lilac to two particles, green to one, and black to zero.]]
[[文件:沙堆识别300x205.png |直立=1.25 |拇指|矩形网格沙堆群的标识元素。黄色像素对应三个粒子的顶点,淡紫色代表两个粒子,绿色表示一个,黑色表示零。]]
+
[[File:Sandpile identity 300x205.png|upright=1.25|thumb|沙堆在矩形网格上的标识。黄色像素对应三颗沙粒的顶点,淡紫色代表两颗沙粒,绿色表示一颗沙粒,黑色表示零颗沙粒。]]
 
 
The identity element of the sandpile group of a rectangular grid. Yellow pixels correspond to vertices carrying three particles, lilac to two particles, green to one, and black to zero.
 
 
 
矩形网格沙堆群的单位元。黄色像素对应的顶点携带三个粒子,淡紫色对应两个粒子,绿色对应一个,黑色对应零。
 
  
 
The '''Abelian sandpile model''', also known as the '''Bak–Tang–Wiesenfeld model''', was the first discovered example of a [[dynamical system]] displaying [[self-organized criticality]].  It was introduced by [[Per Bak]], [[Chao Tang]] and [[Kurt Wiesenfeld]] in a 1987 paper.<ref name=Bak1987>
 
The '''Abelian sandpile model''', also known as the '''Bak–Tang–Wiesenfeld model''', was the first discovered example of a [[dynamical system]] displaying [[self-organized criticality]].  It was introduced by [[Per Bak]], [[Chao Tang]] and [[Kurt Wiesenfeld]] in a 1987 paper.<ref name=Bak1987>
 
The Abelian sandpile model, also known as the Bak–Tang–Wiesenfeld model, was the first discovered example of a dynamical system displaying self-organized criticality.  It was introduced by Per Bak, Chao Tang and Kurt Wiesenfeld in a 1987 paper.
 
 
'''<font color="#ff8000"> 阿贝尔沙堆模型Abelian sandpile model</font>''',也被称为 Bak-Tang-Wiesenfeld 模型,是第一个发现的动力系统展示自组织临界性的例子。它是由 Per Bak,Chao Tang 和 Kurt Wiesenfeld 在1987年的一篇论文中介绍的。
 
 
 
{{cite journal
 
{{cite journal
 
 
  | author = Bak, P. |author2=Tang, C. |author3-link=Kurt Wiesenfeld |author3=Wiesenfeld, K.
 
  | author = Bak, P. |author2=Tang, C. |author3-link=Kurt Wiesenfeld |author3=Wiesenfeld, K.
 
The model is a cellular automaton.  In its original formulation, each site on a finite grid has an associated value that corresponds to the slope of the pile.  This slope builds up as "grains of sand" (or "chips") are randomly placed onto the pile, until the slope exceeds a specific threshold value at which time that site collapses transferring sand into the adjacent sites, increasing their slope.  Bak, Tang, and Wiesenfeld considered process of successive random placement of sand grains on the grid; each such placement of sand at a particular site may have no effect, or it may cause a cascading reaction that will affect many sites.
 
 
这个模型是一个'''<font color="#ff8000"> 细胞自动机Cellular automaton</font>'''。在最初的公式中,有限网格上的每个位置都有一个与桩的坡度相对应的关联值。这个斜坡以“沙粒”(或“碎片”)随机放置在桩上的方式逐渐形成,直到斜坡超过一个特定的阈值,在这个阈值的时候,这个位置倒塌,将沙子转移到邻近的位置,增加了它们的斜坡。贝克、唐和维森菲尔德考虑了在网格上连续随机放置沙粒的过程; 每次这样放置沙粒在特定地点可能没有效果,或者可能会引起级联反应,影响许多地点。
 
 
 
  | year = 1987
 
  | year = 1987
 
 
  | title = Self-organized criticality: an explanation of 1/''&fnof;'' noise
 
  | title = Self-organized criticality: an explanation of 1/''&fnof;'' noise
 
The model has since been studied on the infinite lattice, on other (non-square) lattices, and on arbitrary graphs (including directed multigraphs). It is closely related to the dollar game, a variant of the chip-firing game introduced by Biggs.
 
 
该模型已经在无限格、其他(非正方形)格和任意图(包括有向多重图)上进行了研究。它与美元游戏密切相关,美元游戏是比格斯引入的一种筹码点火游戏的变体。
 
 
 
  | journal = [[Physical Review Letters]]
 
  | journal = [[Physical Review Letters]]
 
 
  | volume = 59
 
  | volume = 59
 
 
  | issue = 4
 
  | issue = 4
 
The sandpile model is a cellular automaton originally defined on a N\times M rectangular grid (checkerboard) \Gamma\subset\mathbb{Z}^2 of the standard square lattice \mathbb{Z}^2.
 
 
'''<font color="#ff8000"> 沙堆模型Sandpile model</font>'''是一个最初定义在 N\times M矩形网格(棋盘格) Gamma 子集 mathbb { z } ^ 2的标准正方形格子数学{ z } ^ 2上的l细胞自动机模型。
 
 
 
  | pages = 381&ndash;384
 
  | pages = 381&ndash;384
 
To each vertex (side, field) (x,y)\in\Gamma of the grid, we associate a value (grains of sand, slope, particles) z_0(x,y)\in\{0,1,2,3\}, with z_0\in\{0,1,2,3\}^\Gamma referred to as the (initial) configuration of the sandpile.
 
 
对于格点 Gamma 中的每个顶点(边、场)(x、 y) ,我们将{0,1,2,3}中的一个值(沙粒、坡度、粒子) z0(x,y)与{0,1,2,3} ^ Gamma 中的 z0联系起来,称为沙堆的(初始)构型。
 
 
 
  | doi = 10.1103/PhysRevLett.59.381
 
  | doi = 10.1103/PhysRevLett.59.381
 
 
| bibcode=1987PhRvL..59..381B
 
| bibcode=1987PhRvL..59..381B
 
The dynamics of the automaton at iteration i\in\mathbb{N} are then defined as follows:
 
 
在 mathbb { n }中,自动机在迭代 i 时的动态定义如下:
 
 
 
  | pmid=10035754
 
  | pmid=10035754
 
 
|author-link=Per Bak |author2-link=Chao Tang }}</ref>
 
|author-link=Per Bak |author2-link=Chao Tang }}</ref>
  
  Choose a random vertex (x_i,y_i)\in\Gamma according to some probability distribution (usually uniform).  
+
'''<font color="#ff8000"> 阿贝尔沙堆模型Abelian sandpile model</font>''',也被称为 Bak-Tang-Wiesenfeld 模型,是第一个发现的动力系统展示自组织临界性的例子。它是由 Per Bak,Chao Tang 和 Kurt Wiesenfeld 在1987年的一篇论文<ref name=Bak1987>
 
+
{{cite journal
根据一些概率分布(通常是均匀的)选择一个随机顶点 (x_i,y_i)\in\Gamma。
+
  | author = Bak, P. |author2=Tang, C. |author3-link=Kurt Wiesenfeld |author3=Wiesenfeld, K.
 
+
| year = 1987
 
+
| title = Self-organized criticality: an explanation of 1/''&fnof;'' noise
 
+
| journal = [[Physical Review Letters]]
  Add one grain of sand to this vertex while letting the grain numbers for all other vertices unchanged, i.e. set<br />z_i(x_i,y_i)=z_{i-1}(x_i,y_i)+1 and<br />z_i(x,y)=z_{i-1}(x,y) for all (x,y)\neq(x_i,y_i).
+
| volume = 59
 
+
| issue = 4
向这个顶点添加一粒沙子,同时让其他顶点的粒子数保持不变,即。对所有(x,y)\neq(x_i,y_i)设置 <br />z_i(x_i,y_i)=z_{i-1}(x_i,y_i)+1 和<br />z_i(x,y)=z_{i-1}(x,y)。
+
| pages = 381&ndash;384
 +
  | doi = 10.1103/PhysRevLett.59.381
 +
| bibcode=1987PhRvL..59..381B
 +
| pmid=10035754
 +
|author-link=Per Bak |author2-link=Chao Tang }}</ref>中提出的。
  
 
The model is a [[cellular automaton]].  In its original formulation, each site on a finite grid has an associated value that corresponds to the slope of the pile.  This slope builds up as "grains of sand" (or "chips") are randomly placed onto the pile, until the slope exceeds a specific threshold value at which time that site collapses transferring sand into the adjacent sites, increasing their slope.  Bak, Tang, and Wiesenfeld considered process of successive random placement of sand grains on the grid; each such placement of sand at a particular site may have no effect, or it may cause a cascading reaction that will affect many sites.
 
The model is a [[cellular automaton]].  In its original formulation, each site on a finite grid has an associated value that corresponds to the slope of the pile.  This slope builds up as "grains of sand" (or "chips") are randomly placed onto the pile, until the slope exceeds a specific threshold value at which time that site collapses transferring sand into the adjacent sites, increasing their slope.  Bak, Tang, and Wiesenfeld considered process of successive random placement of sand grains on the grid; each such placement of sand at a particular site may have no effect, or it may cause a cascading reaction that will affect many sites.
 +
这个模型是一种'''<font color="#ff8000"> 细胞自动机模型Cellular automaton</font>'''。在最初的公式中,有限网格上的每个位置都有一个与沙堆的坡度相对应的关联值。当“沙粒”(或“碎片”)被随机放置在沙堆上时,放置位置的斜坡就会堆积起来,直到倾斜程度超过一个特定的阈值,这个位置倒塌,沙子会转移到邻近的位置,增加它们的斜坡。这个斜坡以“沙粒”(或“碎片”)随机放置的方式逐渐形成,直到斜坡超过一个特定的阈值,在这个阈值的时候,这个位置倒塌,将沙子转移到邻近的位置,增加它们的斜坡。Bak,Tang和 Wiesenfeld考虑了在网格上连续随机放置沙粒的过程; 每次这样在特定位置放置沙粒有可能没有产生影响,也有可能会引起级联反应,影响到周围的其他位置。
  
模型是一个[[元胞自动机]]。在其原始公式中,有限网格上的每个场地都有一个与桩体坡度相对应的相关值。当“砂粒”(或“碎屑”)随机放置在桩上时,坡度逐渐增大,直到坡度超过特定的阈值,此时场地坍塌,将砂土转移到相邻场地,从而增加其坡度。Bak、Tang和Wiesenfeld考虑了在网格上连续随机放置沙粒的过程;在特定位置上的每一个这样的放置都可能没有效果,或者可能引起级联反应,从而影响到许多站点。
 
 
If all vertices are stable, i.e. z_i(x,y)<4 for all (x,y)\in\Gamma, also the configuration z_i is said to be stable. In this case, continue with the next iteration.
 
 
如果所有的顶点都是稳定的,即 z_i(x,y)<4对于 Gamma 中的所有(x,y)\in\Gamma,配置 z_i 也被认为是稳定的。在这种情况下,继续下一个迭代。
 
 
 
 
If at least one vertex is unstable, i.e. z_i(x_u,y_u)\geq 4 for some (x_u,y_u)\in\Gamma, the whole configuration z_i is said to be unstable. In this case, choose any unstable vertex (x_u,y_u)\in\Gamma at random. Topple this vertex by reducing its grain number by four and by increasing the grain numbers of each of its (at maximum four) direct neighbors by one, i.e. set<br />z_i(x_u,y_u) \rightarrow z_i(x_u,y_u) - 4,, and<br />z_i( x_u \pm 1, y_u \pm 1) \rightarrow z_i( x_u \pm 1, y_u\pm 1) + 1 if ( x_u \pm 1, y_u\pm 1)\in\Gamma.<br />If a vertex at the boundary of the domain topples, this results in a net loss of grains (two grains at the corner of the grid, one grain otherwise).
 
 
如果至少有一个顶点是不稳定的,即 z_i(x_u,y_u)\geq 4对于 γ 中的某些(x_u,y_u)\in\Gamma,整个构型 z_i  被认为是不稳定的。在这种情况下,随机选择 Gamma 中的任意不稳定顶点(x_u,y_u)\in\Gamma 。通过减少四颗粒数和增加一颗粒数(最多四颗)来推翻这个顶点。设置 <br />z_i(x_u,y_u) \rightarrow z_i(x_u,y_u) - 4,以及 <br />z_i( x_u \pm 1, y_u \pm 1) \rightarrow z_i( x_u \pm 1, y_u\pm 1) + 1 if ( x_u \pm 1, y_u\pm 1)\in\Gamma.<br /> 如果一个顶点在畴的边界倾斜,这将导致晶粒的净损失(两个晶粒在网格的角落,否则一个晶粒)。
 
  
 
The model has since been studied on the infinite lattice, on other (non-square) lattices, and on arbitrary graphs (including directed multigraphs).<ref name=Hol2008>{{cite book
 
The model has since been studied on the infinite lattice, on other (non-square) lattices, and on arbitrary graphs (including directed multigraphs).<ref name=Hol2008>{{cite book
该模型已经在无限格、其他(非正方形)格和任意图(包括有向多重图)上进行了研究。<ref name=Hol2008>{{cite book
 
 
Due to the redistribution of grains, the toppling of one vertex can render other vertices unstable. Thus, repeat the toppling procedure until all vertices of z_i eventually become stable and continue with the next iteration.
 
 
由于颗粒的重新分布,一个顶点的倾斜会导致其他顶点的不稳定。因此,重复采样过程直到 z _ i 的所有顶点最终变得稳定并继续下一次迭代。
 
 
 
  | author = Holroyd, A. |author2=Levine, L. |author3=Mészáros, K. |author4=Peres, Y. |author5=Propp, J. |author6=Wilson, B.
 
  | author = Holroyd, A. |author2=Levine, L. |author3=Mészáros, K. |author4=Peres, Y. |author5=Propp, J. |author6=Wilson, B.
 
 
  | year = 2008
 
  | year = 2008
 
The toppling of several vertices during one iteration is referred to as an avalanche. Every avalanche is guaranteed to eventually stop, i.e. after a finite number of topplings some stable configuration is reached such that the automaton is well defined. Moreover, although there will often be many possible choices for the order in which to topple vertices, the final stable configuration does not depend on the chosen order; this is one sense in which the sandpile is abelian. Similarly, the number of times each vertex topples during each iteration is also independent of the choice of toppling order.
 
 
在一次迭代中多个顶点的倾覆被称为雪崩。每一次雪崩最终都会停止,也就是说。经过有限数量的顶部耦合,一些稳定的配置达到这样的自动机是定义良好的。此外,尽管推翻顶点的顺序常常有许多可能的选择,但最终的稳定配置并不依赖于所选择的顺序; 这是沙堆是交换的一种意义。类似地,每个顶点在每次迭代中倾覆的次数也与倾覆顺序的选择无关。
 
 
 
  | title = Chip-Firing and Rotor-Routing on Directed Graphs
 
  | title = Chip-Firing and Rotor-Routing on Directed Graphs
 
 
  | journal = In and Out of Equilibrium 2
 
  | journal = In and Out of Equilibrium 2
 
 
  | volume = 60
 
  | volume = 60
 
To generalize the sandpile model from the rectangular grid of the standard square lattice to an arbitrary undirected finite multigraph G=(V,E) without loops, a special vertex s\in V called the sink is specified that is not allowed to topple. A configuration (state) of the model is then a function z:V\setminus\{s\}\rightarrow\mathbb{N}_0 counting the non-negative number of grains on each non-sink vertex. A non-sink vertex v\in V\setminus\{s\} with
 
 
为了将'''<font color="#ff8000"> 沙堆模型</font>'''从标准正方格的矩形网格推广到任意无向有限重图 g = (v,e) ,在 v 中指定了一个不允许倒塌的特殊顶点 s。模型的配置(状态)是一个函数 z: v set- { s }-right tarrow mathbb { n } _ 0,计算每个非汇顶点上的非负粒子数。V set- { s }中的非接收点 v
 
 
 
  | pages = 331&ndash;364
 
  | pages = 331&ndash;364
 
z(v)\geq \deg(v)
 
 
z(v)\geq \deg(v)
 
 
 
  | doi = 10.1007/978-3-7643-8786-0_17
 
  | doi = 10.1007/978-3-7643-8786-0_17
 
 
| bibcode=1987PhRvL..59..381B
 
| bibcode=1987PhRvL..59..381B
 
+
|arxiv=0801.3306|isbn=978-3-7643-8785-3 |s2cid=7313023 }}</ref> It is closely related to the [[Chip-firing game#Biggs's Variant|dollar game]], a variant of the [[chip-firing game]] introduced by Biggs.<ref>{{cite journal|last=Biggs|first=Norman L.|date=25 June 1997|title=Chip-Firing and the Critical Group of a Graph|url=ftp://ftp.math.ethz.ch/hg/EMIS/journals/JACO/Volume9_1/m6g7032786582625.fulltext.pdf|journal=Journal of Algebraic Combinatorics|pages=25–45|accessdate=10 May 2014}}</ref>
is unstable; it can be toppled, which sends one of its grains to each of its (non-sink) neighbors:
+
该模型已经在无限栅格、其他(非方形)栅格和任意图(包括有向多重图)上进行了研究。<ref name=Hol2008>{{cite book
 
+
| author = Holroyd, A. |author2=Levine, L. |author3=Mészáros, K. |author4=Peres, Y. |author5=Propp, J. |author6=Wilson, B.
它是不稳定的,它可以被推倒,它把一颗沙粒发送给它的(非下沉的)邻居:
+
| year = 2008
 
+
| title = Chip-Firing and Rotor-Routing on Directed Graphs
|arxiv=0801.3306|isbn=978-3-7643-8785-3 }}</ref> It is closely related to the [[Chip-firing game#Biggs's Variant|dollar game]], a variant of the [[chip-firing game]] introduced by Biggs.<ref>{{cite journal|last=Biggs|first=Norman L.|date=25 June 1997|title=Chip-Firing and the Critical Group of a Graph|url=ftp://ftp.math.ethz.ch/hg/EMIS/journals/JACO/Volume9_1/m6g7032786582625.fulltext.pdf|journal=Journal of Algebraic Combinatorics|pages=25–45|accessdate=10 May 2014}}</ref>
+
| journal = In and Out of Equilibrium 2
 
+
| volume = 60
z(v) \to z(v) - \deg(v)
+
| pages = 331&ndash;364
 
+
| doi = 10.1007/978-3-7643-8786-0_17
Z (v) to z (v)-deg (v)
+
| bibcode=1987PhRvL..59..381B
 +
|arxiv=0801.3306|isbn=978-3-7643-8785-3 |s2cid=7313023 }}</ref>它与美元游戏密切相关,美元游戏是Biggs引入的一种chip-firing游戏的变体。<ref>{{cite journal|last=Biggs|first=Norman L.|date=25 June 1997|title=Chip-Firing and the Critical Group of a Graph|url=ftp://ftp.math.ethz.ch/hg/EMIS/journals/JACO/Volume9_1/m6g7032786582625.fulltext.pdf|journal=Journal of Algebraic Combinatorics|pages=25–45|accessdate=10 May 2014}}</ref>
  
 
 
z(u) \to z(u) + 1 for all u\sim v, u\neq s.
 
 
Z (u) to z (u) + 1 for all u sim v,u neq s.
 
  
 
==Definition (rectangular grids)定义(矩形网格)==
 
==Definition (rectangular grids)定义(矩形网格)==
 
 
The sandpile model is a [[cellular automaton]] originally defined on a <math>N\times M</math> rectangular grid (''checkerboard'') <math>\Gamma\subset\mathbb{Z}^2</math> of the [[Square lattice|standard square lattice]] <math>\mathbb{Z}^2</math>.
 
The sandpile model is a [[cellular automaton]] originally defined on a <math>N\times M</math> rectangular grid (''checkerboard'') <math>\Gamma\subset\mathbb{Z}^2</math> of the [[Square lattice|standard square lattice]] <math>\mathbb{Z}^2</math>.
  
沙堆模型是一个[[元胞自动机]]最初定义在一个<math>N\times M</math>矩形网格(“棋盘格”)<math>\Gamma\subset\mathbb{Z}^2</math>[[正方形格|标准正方形格]]<math>\mathbb{Z}^2</math>
+
沙堆模型是一个'''<font color="#ff8000">元胞自动机cellular automaton </font>''',它最初定义在<math> N\times M </math>矩形网格(棋盘格)上,其顶点在标准的正方形格子<math> \mathbb{Z}^2 </math><math> \Gamma\subset\mathbb{Z}^2 </math>
 
 
The cellular automaton then progresses as before, i.e. by adding, in each iteration, one particle to a randomly chosen non-sink vertex  and toppling until all vertices are stable.
 
 
 
然后,细胞自动机的进展如前,即。通过在每次迭代中向随机选择的非汇点添加一个粒子并进行倾斜,直到所有顶点都稳定。
 
  
 
To each vertex (''side'', ''field'') <math>(x,y)\in\Gamma</math> of the grid, we associate a value (''grains of sand'', ''slope'', ''particles'') <math>z_0(x,y)\in\{0,1,2,3\}</math>, with <math>z_0\in\{0,1,2,3\}^\Gamma</math> referred to as the (initial) configuration of the sandpile.
 
To each vertex (''side'', ''field'') <math>(x,y)\in\Gamma</math> of the grid, we associate a value (''grains of sand'', ''slope'', ''particles'') <math>z_0(x,y)\in\{0,1,2,3\}</math>, with <math>z_0\in\{0,1,2,3\}^\Gamma</math> referred to as the (initial) configuration of the sandpile.
  
对于网格的每个顶点(“边”、“场”)<math>(x,y)\in\Gamma</math>中,我们将{0,1,2,3\}</math>中的值(“沙粒”、“坡度”、“粒子”)<math>z_0(x,y)\in\{0,1,2,3\}</math>与称为沙堆(初始)配置的<math>z_0\in\{0,1,2,3\}^\Gamma</math>联系在一起。
+
对于栅格中的每个顶点<math> (x,y)\in\Gamma </math>,我们关联一个值(沙粒、坡度、颗粒) <math> z_0(x,y)\in\{0,1,2,3\} </math>,这样所有顶点的初始状态<math> z_0\in\{0,1,2,3\}^\Gamma </math>被称为沙堆的(初始)构型。
 
 
The definition of the sandpile model given above for finite rectangular grids \Gamma\subset\mathbb{Z}^2 of the standard square lattice \mathbb{Z}^2 can then be seen as a special case of this definition: consider the graph G=(V,E) which is obtained from \Gamma by adding an additional vertex, the sink, and by drawing additional edges from the sink to every boundary vertex of \Gamma such that the degree of every non-sink vertex of G is four. In this manner, also sandpile models on non-rectangular grids of the standard square lattice (or of any other lattice) can be defined: Intersect some bounded subset S of \mathbb{R}^2 with \mathbb{Z}^2. Contract every edge of \mathbb{Z}^2 whose two endpoints are not in S\cap\mathbb{Z}^2. The single remaining vertex outside of S\cap\mathbb{Z}^2 then constitutes the sink of the resulting sandpile graph.
 
 
 
上面给出的标准方格点阵\mathbb{Z}^2的有限矩形网格\Gamma\subset\mathbb{Z}^2的定义可以看作是这个定义的一个特例:考虑图G=(V,E),它是通过添加一个额外的顶点'''<font color="#ff8000"> 汇Sink</font>'''从Gamma获得的,并通过从汇点到每个边界顶点绘制附加边,使得G的每个非汇顶点的阶数为4。以这种方式,也可以定义标准正方形格(或任何其他格点)的非矩形网格上的沙堆模型:将\mathbb{R}^2的一些有界子集与\mathbb{Z}^2相交。收缩\mathbb{Z}^2的每条边,其两个端点不在S\cap\mathbb{Z}^2中。S\cap\mathbb{Z}^2之外的一个剩余顶点构成了结果沙堆图的汇。
 
 
 
  
 
The dynamics of the automaton at iteration <math>i\in\mathbb{N}</math> are then defined as follows:
 
The dynamics of the automaton at iteration <math>i\in\mathbb{N}</math> are then defined as follows:
 
+
自动机的动力学过程在第<math> i\in\mathbb{N} </math>次迭代时的定义如下:
然后,自动机在迭代<math>i\in\mathbb{N}</math>时的动力学定义如下:
 
  
 
# Choose a random vertex <math>(x_i,y_i)\in\Gamma</math> according to some probability distribution (usually uniform).  
 
# Choose a random vertex <math>(x_i,y_i)\in\Gamma</math> according to some probability distribution (usually uniform).  
#根据某种概率分布(通常是均匀的),选择一个随机顶点<math>(x_i,y_i)\in\Gamma</math>。
 
 
In the dynamics of the sandpile automaton defined above, some stable configurations (0\leq z(v)<4 for all v\in G\setminus\{s\}) appear infinitely often, while others can only appear a finite number of times (if at all). The former are referred to as recurrent configurations, while the latter are referred to as transient configurations. The recurrent configurations thereby consist of all stable non-negative configurations which can be reached from any other stable configuration by repeatedly adding grains of sand to vertices and toppling. It is easy to see that the minimally stable configuration z_m, where every vertex carries z_m(v)=deg(v)-1 grains of sand, is reachable from any other stable configuration (add deg(v)-z(v)-1\geq 0 grains to every vertex). Thus, equivalently, the recurrent configurations are exactly those configurations which can be reached from the minimally stable configuration by only adding grains of sand and stabilizing.
 
 
在上面定义的沙堆自动机的动力学中,一些稳定的组态(0\leq z(v)<4,对于所有v\In G\setminus\{s})经常出现,而另一些则只能出现有限次(如果有的话)。前者被称为重复配置,而后者被称为瞬态配置。因此,周期性构形由所有稳定的非负构形组成,这些构形可以通过反复向顶点添加砂粒和倾倒而达到。很容易看出,最小稳定配置z峎m,其中每个顶点携带z峎m(v)=deg(v)-1颗粒,可从任何其他稳定配置(每个顶点添加deg(v)-z(v)-1\geq 0颗粒)。因此,等效地说,周期性构型正是通过添加沙粒和稳定化就可以从最小稳定构型得到的构型。
 
 
 
 
# Add one grain of sand to this vertex while letting the grain numbers for all other vertices unchanged, i.e. set<br /><math>z_i(x_i,y_i)=z_{i-1}(x_i,y_i)+1</math> and<br /><math>z_i(x,y)=z_{i-1}(x,y)</math> for all <math>(x,y)\neq(x_i,y_i)</math>.
 
# Add one grain of sand to this vertex while letting the grain numbers for all other vertices unchanged, i.e. set<br /><math>z_i(x_i,y_i)=z_{i-1}(x_i,y_i)+1</math> and<br /><math>z_i(x,y)=z_{i-1}(x,y)</math> for all <math>(x,y)\neq(x_i,y_i)</math>.
#向该顶点添加一粒沙子,同时让所有其他顶点的粒数保持不变,即为所有<math>(x,y,u i)=z{i-1}(x_i,y_i)+1</math>和<br/><math>z_i(x,y)=z{i-1}(x,y)</math>(x,y)</math>。
 
 
 
# If all vertices are ''stable'', i.e. <math>z_i(x,y)<4</math> for all <math>(x,y)\in\Gamma</math>, also the configuration <math>z_i</math> is said to be stable. In this case, continue with the next iteration.
 
# If all vertices are ''stable'', i.e. <math>z_i(x,y)<4</math> for all <math>(x,y)\in\Gamma</math>, also the configuration <math>z_i</math> is said to be stable. In this case, continue with the next iteration.
 
#如果所有顶点都是“稳定”的,即<math>z_i(x,y)<4</math>对于Gamma</math>中的所有<math>(x,y)<4</math>,那么配置<math>z_i</math>也被称为稳定的。在这种情况下,继续下一个迭代。
 
 
Not every non-negative stable configuration is recurrent. For example, in every sandpile model on a graph consisting of at least two connected non-sink vertices, every stable configuration where both vertices carry zero grains of sand is non-recurrent. To prove this, first note that the addition of grains of sand can only increase the total number of grains carried by the two vertices together. To reach a configuration where both vertices carry zero particles from a configuration where this is not the case thus necessarily involves steps where at least one of the two vertices is toppled. Consider the last one of these steps. In this step, one of the two vertices has to topple last. Since toppling transfers a grain of sand to every neighboring vertex, this implies that the total number of grains carried by both vertices together cannot be lower than one, which concludes the proof.
 
 
并非所有非负稳定构型都是循环的。例如,在一个至少由两个连通的非汇点组成的图上的每个沙堆模型中,每个稳定的结构,其中两个顶点携带零沙粒是非递归的。为了证明这一点,首先要注意的是沙粒的增加只能增加两个顶点共同承载的沙粒的总数。为了达到两个顶点都携带零粒子的配置,而实际情况并非如此,因此必然涉及到两个顶点中至少有一个被推翻的步骤。考虑这些步骤中的最后一个。在这个步骤中,两个顶点中的一个必须最后倒下。由于倾倒把一粒沙子转移到每个相邻的顶点,这意味着两个顶点共同承载的沙粒总数不能低于一粒,因而得证。
 
 
 
# If at least one vertex is ''unstable'', i.e. <math>z_i(x_u,y_u)\geq 4</math> for some <math>(x_u,y_u)\in\Gamma</math>, the whole configuration <math>z_i</math> is said to be unstable. In this case, choose any unstable vertex <math>(x_u,y_u)\in\Gamma</math> at random. ''Topple'' this vertex by reducing its grain number by four and by increasing the grain numbers of each of its (at maximum four) direct neighbors by one, i.e. set<br /><math>z_i(x_u,y_u) \rightarrow z_i(x_u,y_u) - 4,</math>, and<br /><math>z_i( x_u \pm 1, y_u \pm 1) \rightarrow z_i( x_u \pm 1, y_u\pm 1) + 1</math> if <math>( x_u \pm 1, y_u\pm 1)\in\Gamma</math>.<br />If a vertex at the boundary of the domain topples, this results in a net loss of grains (two grains at the corner of the grid, one grain otherwise).
 
# If at least one vertex is ''unstable'', i.e. <math>z_i(x_u,y_u)\geq 4</math> for some <math>(x_u,y_u)\in\Gamma</math>, the whole configuration <math>z_i</math> is said to be unstable. In this case, choose any unstable vertex <math>(x_u,y_u)\in\Gamma</math> at random. ''Topple'' this vertex by reducing its grain number by four and by increasing the grain numbers of each of its (at maximum four) direct neighbors by one, i.e. set<br /><math>z_i(x_u,y_u) \rightarrow z_i(x_u,y_u) - 4,</math>, and<br /><math>z_i( x_u \pm 1, y_u \pm 1) \rightarrow z_i( x_u \pm 1, y_u\pm 1) + 1</math> if <math>( x_u \pm 1, y_u\pm 1)\in\Gamma</math>.<br />If a vertex at the boundary of the domain topples, this results in a net loss of grains (two grains at the corner of the grid, one grain otherwise).
 
#如果至少有一个顶点是“不稳定”的,即<math>z_i(x_u,y u u)\geq 4</math>对于某些<math>(x\u u,y_u u)\n在\Gamma</math>中,整个配置<math>zu i</math>称为不稳定。在这种情况下,随机选择\Gamma</math>中的任何不稳定顶点<math>(x\u,y\u)通过将其晶粒度减少4个,并将其(最多4个)直接相邻的每个晶粒数增加1个,即设置<br /><math>z_i(x_u,y_u) \rightarrow z_i(x_u,y_u) - 4,</math>,和<br /><math>z_i( x_u \pm 1, y_u \pm 1) \rightarrow z_i( x_u \pm 1, y_u\pm 1) + 1</math> if <math>( x_u \pm 1, y_u\pm 1)\in\Gamma</math>.<br />如果域边界上的一个顶点倒下,这将导致晶粒净损失(两个晶粒位于网格的一角,否则一个晶粒)。
 
 
 
# Due to the redistribution of grains, the toppling of one vertex can render other vertices unstable. Thus, repeat the toppling procedure until all vertices of <math>z_i</math> eventually become stable and continue with the next iteration.
 
# Due to the redistribution of grains, the toppling of one vertex can render other vertices unstable. Thus, repeat the toppling procedure until all vertices of <math>z_i</math> eventually become stable and continue with the next iteration.
  
#由于晶粒的重新分布,一个顶点的倾倒会使其他顶点变得不稳定。因此,重复倾倒过程,直到<math>züi</math>的所有顶点最终变得稳定,并继续下一个迭代。
+
#根据某种概率分布(通常为均匀分布)随机选择一个顶点。根据一些概率分布(通常是均匀的)选择一个随机顶点<math> (x_i,y_i)\in\Gamma </math>
 
+
#向这个顶点添加一粒沙子,同时让其他顶点的沙粒数保持不变,也就是设定<math> <br />z_i(x_i,y_i)=z_{i-1}(x_i,y_i)+1 </math>,对于所有的<math> (x,y)\neq(x_i,y_i) </math>,<math> <br />z_i(x,y)=z_{i-1}(x,y) </math>。
Given a configuration z, z(v)\in\mathbb{N}_0 for all v\in G\setminus\{s\}, toppling unstable non-sink vertices on a finite connected graph until no unstable non-sink vertex remains leads to a unique stable configuration z^\circ, which is called the stabilization of z. Given two stable configurations z and w, we can define the operation z*w \to (z+w)^\circ, corresponding to the vertex-wise addition of grains followed by the stabilization of the resulting sandpile.
+
#如果所有的顶点都是稳定的,即如果<math> (x,y)\in\Gamma </math>中<math> z_i(x,y)<4 </math>,那么<math> z_i </math>被认为是稳定的。在这种情况下,继续下一轮迭代。
 
+
#如果至少有一个顶点是不稳定的,即对于一些<math> (x_u,y_u)\in\Gamma</math>,<math>z_i(x_u,y_u)\geq 4</math>,<math>z_i</math>被认为是不稳定的。在这种情况下,随机选择任意不稳定顶点<math> (x_u,y_u)\in\Gamma</math>。将该顶点的沙粒数减少4个,清空这个顶点,并将其每个(最多4个)直接邻居的沙粒数增加1个。即:<math><br />z_i(x_u,y_u) \rightarrow z_i(x_u,y_u) – 4</math>,<math><br />z_i( x_u \pm 1, y_u \pm 1) \rightarrow z_i( x_u \pm 1, y_u\pm 1) + 1 if ( x_u \pm 1, y_u\pm 1)\in\Gamma.<br /></math>。如果一个在边界的顶点产生崩塌,这将导致沙粒的净损失(两粒在网格的角落,一粒在其他地方)。
给定一个配置z,z(v)in\mathbb{N}0,对于所有的v\in G\setminus\{s\},在有限连通图上倾倒不稳定的'''<font color="#ff8000"> 非汇顶点Non-sink vertices</font>''',直到没有不稳定的非汇顶点存在,从而得到一个唯一的稳定配置z^环,这就是z的稳定化。给定两个稳定的z和w配置,我们可以定义z*w\to(z+w)^ circ,对应于在顶点方向上添加颗粒,然后稳定得到的沙堆。
+
#由于沙粒的重新分布,一个顶点的崩塌会使其他顶点不稳定。这样,重复崩塌的过程,直到<math>z_i</math>状态下的所有顶点最终稳定下来,继续下一轮迭代。
  
  
第191行: 第86行:
 
The toppling of several vertices during one iteration is referred to as an ''avalanche''. Every avalanche is guaranteed to eventually stop, i.e. after a finite number of topplings some stable configuration is reached such that the automaton is well defined. Moreover, although there will often be many possible choices for the order in which to topple vertices, the final stable configuration does not depend on the chosen order; this is one sense in which the sandpile is [[Abelian group|''abelian'']]. Similarly, the number of times each vertex topples during each iteration is also independent of the choice of toppling order.
 
The toppling of several vertices during one iteration is referred to as an ''avalanche''. Every avalanche is guaranteed to eventually stop, i.e. after a finite number of topplings some stable configuration is reached such that the automaton is well defined. Moreover, although there will often be many possible choices for the order in which to topple vertices, the final stable configuration does not depend on the chosen order; this is one sense in which the sandpile is [[Abelian group|''abelian'']]. Similarly, the number of times each vertex topples during each iteration is also independent of the choice of toppling order.
  
在一次迭代过程中,一个顶点被称为“一个顶点的崩塌”。每一次雪崩都保证最终停止,也就是说,在有限数量的倾覆之后,达到某种稳定的配置,从而使自动机得到很好的定义。此外,虽然通常会有许多可能的选择,以何种顺序推翻顶点,最终的稳定配置并不取决于所选择的顺序;这一种意义上的沙堆是[[阿贝尔群|阿贝尔''']]。同样,每个顶点在每次迭代过程中的倒转次数也与翻转顺序的选择无关。
+
在一次迭代中多个顶点的崩塌被称为雪崩。每一次雪崩最终都会停止,也就是说,经过有限数量的顶点崩塌,会达到某种稳定的配置,这样自动机就得到了很好的定义。此外,尽管顶点崩塌的顺序常常有许多可能的选择,但最终的稳定状态并不依赖于所选择的顺序; 这是沙堆模型具有的可交换性质。类似地,在每次迭代过程中,每个顶点的崩塌次数也与崩塌顺序的选择是无关。
 
 
Given an arbitrary but fixed ordering of the non-sink vertices, multiple toppling operations, which can e.g. occur during the stabilization of an unstable configuration, can be efficiently encoded by using the graph Laplacian \Delta=D-A, where D is the degree matrix and A is the adjacency matrix of the graph.
 
 
 
给定非汇聚顶点的一个任意但固定的顺序,多个顶点采样操作,它可以。在不稳定配置的稳定化过程中,可以通过使用图 Laplacian Delta = d-a 有效地进行编码,其中 d 是度矩阵,a 是图的邻接矩阵。
 
  
 
==Definition (undirected finite multigraphs)定义(无向有限多图)==
 
==Definition (undirected finite multigraphs)定义(无向有限多图)==
 
+
To generalize the sandpile model from the rectangular grid of the standard square lattice to an arbitrary undirected finite multigraph <math>G=(V,E)</math>, a special vertex <math>s\in V</math> called the ''sink'' is specified that is not allowed to topple. A ''configuration'' (state) of the model is then a function <math>z:V\setminus\{s\}\rightarrow\mathbb{N}_0</math> counting the non-negative number of grains on each non-sink vertex. A non-sink vertex <math>v\in V\setminus\{s\}</math> with  
Deleting the row and column of \Delta corresponding with the sink yields the reduced graph Laplacian \Delta'. Then, when starting with a configuration z and toppling each vertex v a total of \mathbf{x}(v)\in\mathbb{N}_0 times yields the configuration z-\Delta'\boldsymbol{\cdot}~\mathbf{x}, where \boldsymbol{\cdot} is the contraction product. Furthermore, if \mathbf{x} corresponds to the number of times each vertex is toppled during the stabilization of a given configuration z, then
 
 
 
删除与汇对应的 Delta 行和列,得到简化图 Laplacian Delta’。然后,当以一个配置 z 开始并将每个顶点 v 在 mathbb { n } _ 0中的总和为 \mathbf{x}(v)\in\mathbb{N}_0 时,产生配置 z-\Delta'\boldsymbol{\cdot}~\mathbf{x},其中\boldsymbol{\cdot}是收缩积。此外,如果 \mathbf{x} 对应于在给定配置 z 的稳定过程中每个顶点被推翻的次数,则
 
 
 
To generalize the sandpile model from the rectangular grid of the standard square lattice to an arbitrary undirected finite multigraph <math>G=(V,E)</math> without loops, a special vertex <math>s\in V</math> called the ''sink'' is specified that is not allowed to topple. A ''configuration'' (state) of the model is then a function <math>z:V\setminus\{s\}\rightarrow\mathbb{N}_0</math> counting the non-negative number of grains on each non-sink vertex. A non-sink vertex <math>v\in V\setminus\{s\}</math> with  
 
 
 
为了将沙堆模型从标准方格的矩形网格推广到任意无向有限多图,在V</math>中指定了一个称为“sink”的特殊顶点,称为“sink”。模型的“配置”(状态)就是一个函数<math>z:V\setminus\{s\}\rightarrow\mathbb{N}u0</math>计算每个非汇顶点上的非负晶粒数。<math>v\in V\setminus\{s\}</math> 中的非汇顶点
 
 
 
z^\circ=z-\Delta'\boldsymbol{\cdot}~\mathbf{x}
 
 
 
 
 
 
:<math>z(v)\geq \deg(v)</math>
 
:<math>z(v)\geq \deg(v)</math>
 
In this case, \mathbf{x} is referred to as the toppling or odometer function (of the stabilization of z).
 
 
在这种情况下,\mathbf{x}被称为倾斜或里程计函数(表示 z 的稳定性)。
 
 
 
  
 
is unstable; it can be toppled, which sends one of its grains to each of its (non-sink) neighbors:
 
is unstable; it can be toppled, which sends one of its grains to each of its (non-sink) neighbors:
 
是不稳定的;它可以被推翻,这会将它的一个颗粒发送给它的每个(非下沉)邻居:
 
 
Under the operation *, the set of recurrent configurations forms an abelian group isomorphic to the cokernel of the reduced graph Laplacian \Delta', i.e. to \mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta', whereby n denotes the number of vertices (including the sink). More generally, the set of stable configurations (transient and recurrent) forms a commutative monoid under the operation *. The minimal ideal of this monoid is then isomorphic to the group of recurrent configurations.
 
 
在* 运算下,递归构形的集合构成一个同构于约化图 laplace Delta’上核的阿贝尔群,即同构于约化图 laplace Delta’的上核。对于 mathbf { z } ^ { n-1}/mathbf { z } ^ { n-1} Delta’ ,其中 n 表示顶点数(包括接收器)。更一般地说,稳定构型集(瞬态和回归)在*运算下形成'''<font color="#ff8000"> 交换幺半群Commutative monoid</font>'''。这个幺半群的极小理想于是同构于一组回归构型。
 
 
 
:<math>z(v) \to z(v) - \deg(v)</math>
 
:<math>z(v) \to z(v) - \deg(v)</math>
 
 
:<math>z(u) \to z(u) + 1</math> for all <math>u\sim v</math>, <math>u\neq s</math>.
 
:<math>z(u) \to z(u) + 1</math> for all <math>u\sim v</math>, <math>u\neq s</math>.
 
+
为了将'''<font color="#ff8000"> 沙堆模型</font>'''从标准方格的矩形网格推广到任意无向有限多重图 <math> G=(V,E)</math> ,在 <math> V</math> 中指定了一个不允许崩塌的特殊沉没顶点<math> s</math>。模型的配置(状态)服从函数<math> z:V\setminus\{s\}\rightarrow\mathbb{N}_0</math>,计算每个非沉没顶点上的非负沙粒数。非沉没顶点<math> v\in V\setminus\{s\} </math>当满足<math> z(v)\geq \deg(v) </math>时是不稳定的,它会产生崩塌,将给它的每个(非沉没)邻居分发一颗沙粒:
The group formed by the recurrent configurations, as well as the group \mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta' to which the former is isomorphic, is most commonly referred to as the sandpile group. Other common names for the same group are critical group, Jacobian group or (less often) Picard group. Note, however, that some authors only denote the group formed by the recurrent configurations as the sandpile group, while reserving the name Jacobian group or critical group for the (isomorphic) group defined by \mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta' (or for related isomorphic definitions). Finally, some authors use the name Picard group to refer to the direct product of the sandpile group and \mathbb{Z}, which naturally appears in a cellular automaton closely related to the sandpile model, referred to as the chip firing or dollar game.
+
:<math>z(v) \to z(v) - \deg(v)</math>
 
+
:<math>z(u) \to z(u) + 1</math>对于所有的<math>u\sim v</math>, <math>u\neq s</math>.
由回归构形形成的群,以及与之同构的群 mathbf { z } ^ { n-1}/mathbf { z } ^ { n-1} Delta’ ,通常称为'''<font color="#ff8000"> 沙堆群Sandpile group</font>'''。相同群的其他公共名称有临界群、雅可比群或(少见) Picard 群。注意,有些作者只把由回归构形形成的群称为沙堆群,而把雅可比群或临界群保留为 mathbf { z } ^ { n-1}/mathbf { z } ^ { n-1} Delta’(或相关的同构定义)所定义的(同构)群。最后,一些作者使用 Picard group 来指代 sandpile group 和 mathbb { z }的直接产物,后者自然出现在与 sandpile 模型密切相关的细胞自动机中,被称为'''<font color="#ff8000"> 芯片点火或美元游戏Chip firing or Dollar game</font>'''。
 
 
 
 
 
  
 
The cellular automaton then progresses as before, i.e. by adding, in each iteration, one particle to a randomly chosen non-sink vertex  and toppling until all vertices are stable.
 
The cellular automaton then progresses as before, i.e. by adding, in each iteration, one particle to a randomly chosen non-sink vertex  and toppling until all vertices are stable.
 
+
元胞自动机像之前一样进行,即在每次迭代中,向随机选择的非沉没顶点添加一个沙粒,不断进行崩塌过程,直到所有顶点都稳定。
然后细胞自动机像以前一样进行,即在每次迭代中,将一个粒子添加到随机选择的非汇顶点,然后翻转,直到所有顶点都稳定为止。
 
 
 
Given the isomorphisms stated above, the order of the sandpile group is the determinant of \Delta', which by the matrix tree theorem is the number of spanning trees of the graph.
 
 
 
给定上述同构,沙堆群的顺序是 Delta’的行列式,根据矩阵树定理,它是图的生成树数目。
 
 
 
 
 
  
 
The definition of the sandpile model given above for finite rectangular grids <math>\Gamma\subset\mathbb{Z}^2</math> of the standard square lattice <math>\mathbb{Z}^2</math> can then be seen as a special case of this definition: consider the graph <math>G=(V,E)</math> which is obtained from <math>\Gamma</math> by adding an additional vertex, the sink, and by drawing additional edges from the sink to every boundary vertex of <math>\Gamma</math> such that the [[Degree (graph theory)|degree]] of every non-sink vertex of <math>G</math> is four. In this manner, also sandpile models on non-rectangular grids of the standard square lattice (or of any other lattice) can be defined: Intersect some bounded subset <math>S</math> of <math>\mathbb{R}^2</math> with <math>\mathbb{Z}^2</math>. [[Edge contraction|Contract every edge]] of <math>\mathbb{Z}^2</math> whose two endpoints are not in <math>S\cap\mathbb{Z}^2</math>. The single remaining vertex outside of <math>S\cap\mathbb{Z}^2</math> then constitutes the sink of the resulting sandpile graph.
 
The definition of the sandpile model given above for finite rectangular grids <math>\Gamma\subset\mathbb{Z}^2</math> of the standard square lattice <math>\mathbb{Z}^2</math> can then be seen as a special case of this definition: consider the graph <math>G=(V,E)</math> which is obtained from <math>\Gamma</math> by adding an additional vertex, the sink, and by drawing additional edges from the sink to every boundary vertex of <math>\Gamma</math> such that the [[Degree (graph theory)|degree]] of every non-sink vertex of <math>G</math> is four. In this manner, also sandpile models on non-rectangular grids of the standard square lattice (or of any other lattice) can be defined: Intersect some bounded subset <math>S</math> of <math>\mathbb{R}^2</math> with <math>\mathbb{Z}^2</math>. [[Edge contraction|Contract every edge]] of <math>\mathbb{Z}^2</math> whose two endpoints are not in <math>S\cap\mathbb{Z}^2</math>. The single remaining vertex outside of <math>S\cap\mathbb{Z}^2</math> then constitutes the sink of the resulting sandpile graph.
 +
上面给出的沙堆模型的定义,是在标准正方形网格\mathbb{Z}^2上的有限矩形网格\Gamma\subset\mathbb{Z}^2,它可以看作是下面定义的一个特例:考虑图G=(V,E),从\Gamma添加一个沉没顶点,并添加从沉没顶点到每个边界顶点的边,使得G的每个非沉没顶点的度数为4。以这种方式,也可以定义标准正方形网格(或任何其他类型网格)的非矩形格上的沙堆模型: 将\mathbb{R}^2的一些有界子集S与\mathbb{Z}^2相交。收缩\mathbb{Z}^2的每条边,其两个端点不在S\cap\mathbb{Z}^2中。S\cap\mathbb{Z}^2之外的一个单独剩余顶点构成了最终沙堆图的沉没顶点。
  
上面给出的沙堆模型对于标准方格的有限矩形网格<math>\Gamma\subset\mathbb{Z}^2</math>的定义可以看作是这个定义的一个特例:考虑图<math>G=(V,E)</math>,它是通过添加一个额外的顶点从<math>\Gamma</math>获得的,并通过从汇到<math>\Gamma</math>的每个边界顶点绘制附加边,使得<math>G</math>的每个非汇顶点的[[度(图论)|度]]为4。以这种方式,也可以定义标准正方形格(或任何其他格点)的非矩形网格上的沙堆模型:将<math>\mathbb{R}^2</math>的某些有界子集<math>与<math>\mathbb{Z}^2</math>相交。两个端点不在<math>S\cap\mathbb{Z}^2</math>中的[[Edge construction | Contract every Edge]]。在<math>S\cap\mathbb{Z}^2</math>之外的单个剩余顶点构成了结果沙堆图的汇点。
+
==Transient and recurrent configurations瞬态和循环构型==
 
 
==Transient and recurrent configurations瞬态和反复配置==
 
 
 
The original interest behind the model stemmed from the fact that in simulations on lattices, it is attracted to its critical state, at which point the correlation length of the system and the correlation time of the system go to infinity, without any fine tuning of a system parameter.  This contrasts with earlier examples of critical phenomena, such as the phase transitions between solid and liquid, or liquid and gas, where the critical point can only be reached by precise tuning (e.g., of temperature).  Hence, in the sandpile model we can say that the criticality is self-organized.
 
 
 
模型背后最初的兴趣起源于这样一个事实,即在格子模拟中,它被吸引到其临界状态,在这个临界状态下,系统的相关长度和系统的相关时间趋于无穷大,没有任何系统参数的微调。这与早期的临界现象的例子相反,例如固体和液体或液体和气体之间的相变,其中临界点只能通过精确的调节(例如,温度)才能达到。因此,在沙堆模型中,我们可以说临界是自组织的。
 
 
 
 
In the dynamics of the sandpile automaton defined above, some stable configurations (<math>0\leq z(v)<4</math> for all <math>v\in G\setminus\{s\}</math>) appear infinitely often, while others can only appear a finite number of times (if at all). The former are referred to as ''recurrent configurations'', while the latter are referred to as ''transient configurations''. The recurrent configurations thereby consist of all stable non-negative configurations which can be reached from any other stable configuration by repeatedly adding grains of sand to vertices and toppling. It is easy to see that the ''minimally stable configuration'' <math>z_m</math>, where every vertex carries <math>z_m(v)=deg(v)-1</math> grains of sand, is reachable from any other stable configuration (add <math>deg(v)-z(v)-1\geq 0</math> grains to every vertex). Thus, equivalently, the recurrent configurations are exactly those configurations which can be reached from the minimally stable configuration by only adding grains of sand and stabilizing.
 
In the dynamics of the sandpile automaton defined above, some stable configurations (<math>0\leq z(v)<4</math> for all <math>v\in G\setminus\{s\}</math>) appear infinitely often, while others can only appear a finite number of times (if at all). The former are referred to as ''recurrent configurations'', while the latter are referred to as ''transient configurations''. The recurrent configurations thereby consist of all stable non-negative configurations which can be reached from any other stable configuration by repeatedly adding grains of sand to vertices and toppling. It is easy to see that the ''minimally stable configuration'' <math>z_m</math>, where every vertex carries <math>z_m(v)=deg(v)-1</math> grains of sand, is reachable from any other stable configuration (add <math>deg(v)-z(v)-1\geq 0</math> grains to every vertex). Thus, equivalently, the recurrent configurations are exactly those configurations which can be reached from the minimally stable configuration by only adding grains of sand and stabilizing.
 
+
在上面定义的沙堆自动机的动力学过程中,一些稳定状态的构型(对于所有<math>v\In G\setminus\{s\}</math>,<math>0\leq z(v)<4</math>)经常无限次出现,而另一些则只能出现有限次(如果真的发生的话)。前者被称为“循环构型”,而后者被称为“瞬态构型”。因此,周期性构形由所有稳定的非负构形组成,这些构形可以从任何其他稳定构形中,通过反复向顶点添加沙粒,产生崩塌而得到。很容易看出,“最小稳定配置”<math>zum</math>,其中每个顶点放置<math>zum(v)=deg(v)-1</math>颗沙粒,可从任何其他稳定构型得到(通过向每个顶点添加<math>deg(v)-z(v)-1\geq 0</math>颗沙粒)。因此,也就是说,周期性构型可以从最小稳定构型开始,通过添加沙粒,再稳定化得到。
在上面定义的沙堆自动机的动力学中,一些稳定的配置(<math>0\leq z(v)<4</math>for all<math>v\In G\setminus\{s\}</math>)经常无限次出现,而另一些则只能出现有限次(如果有的话)。前者被称为“重复配置”,而后者被称为“瞬态配置”。因此,周期性构形由所有稳定的非负构形组成,这些构形可以通过反复向顶点添加砂粒和倾倒而达到。很容易看出,“最小稳定配置”<math>zum</math>,其中每个顶点携带<math>zum(v)=deg(v)-1</math>沙粒,可从任何其他稳定配置(向每个顶点添加<math>deg(v)-z(v)-1\geq 0</math>颗粒)。因此,等效地说,周期性构型正是通过添加沙粒和稳定化就可以从最小稳定构型得到的构型。
 
 
 
Once the sandpile model reaches its critical state there is no correlation between the system's response to a perturbation and the details of a perturbation.  Generally this means that dropping another grain of sand onto the pile may cause nothing to happen, or it may cause the entire pile to collapse in a massive slide.  The model also displays 1/&fnof; noise, a feature common to many complex systems in nature.
 
 
 
一旦沙堆模型达到临界状态,系统对扰动的响应和扰动的细节之间就没有相关性了。一般来说,这意味着将另一粒沙子丢到桩上可能不会导致任何事情发生,或者可能导致整个桩在一次大规模的滑动中坍塌。该模型还显示了噪声,这是自然界中许多复杂系统共有的特征。
 
  
 
Not every non-negative stable configuration is recurrent. For example, in every sandpile model on a graph consisting of at least two connected non-sink vertices, every stable configuration where both vertices carry zero grains of sand is non-recurrent. To prove this, first note that the addition of grains of sand can only increase the total number of grains carried by the two vertices together. To reach a configuration where both vertices carry zero particles from a configuration where this is not the case thus necessarily involves steps where at least one of the two vertices is toppled. Consider the last one of these steps. In this step, one of the two vertices has to topple last. Since toppling transfers a grain of sand to every neighboring vertex, this implies that the total number of grains carried by both vertices together cannot be lower than one, which concludes the proof.
 
Not every non-negative stable configuration is recurrent. For example, in every sandpile model on a graph consisting of at least two connected non-sink vertices, every stable configuration where both vertices carry zero grains of sand is non-recurrent. To prove this, first note that the addition of grains of sand can only increase the total number of grains carried by the two vertices together. To reach a configuration where both vertices carry zero particles from a configuration where this is not the case thus necessarily involves steps where at least one of the two vertices is toppled. Consider the last one of these steps. In this step, one of the two vertices has to topple last. Since toppling transfers a grain of sand to every neighboring vertex, this implies that the total number of grains carried by both vertices together cannot be lower than one, which concludes the proof.
 
+
并非所有非负稳定构型都是循环的。例如,在一个至少包含由两个连通的非沉没顶点的图结构的沙堆模型中,如果这两个顶点没有放置沙粒,那么这个稳定结构是非循环的。为了证明这一点,首先要注意的是,沙粒的增加只能增加两个顶点放置的沙粒的总数。为了达到两个顶点都不放置沙粒的构型,从一个不是这种情况的构型出发,必然涉及到两个顶点中至少有一个崩塌的步骤。考虑这些步骤中的最后一个,在这个步骤中,两个顶点中的一个必须最后崩塌。由于崩塌会将对每个相邻的顶点转移一颗沙粒,这意味着两个顶点共同放置的沙粒总数不能低于一颗,因而得证。
不是每一个非负稳定组态都是重复的。例如,在由至少两个连通的非汇点组成的图上的每个沙堆模型中,每个顶点携带零粒沙子的稳定配置都是非递归的。为了证明这一点,首先要注意的是,添加砂粒只会增加两个顶点同时携带的颗粒总数。要达到两个顶点都携带零粒子的配置,而不是这样的配置,因此必须涉及两个顶点中至少一个被推翻的步骤。考虑以下最后一个步骤。在这个步骤中,两个顶点中的一个必须最后倾倒。由于倾倒将一粒沙子转移到每个相邻的顶点,这意味着两个顶点同时携带的沙粒总数不能少于一个,这就证明了这一点。
 
 
 
This model only displays critical behaviour in two or more dimensions.  The sandpile model can be expressed in 1D; however, instead of evolving to its critical state, the 1D sandpile model instead reaches a minimally stable state where every lattice site goes toward the critical slope.
 
 
 
此模型仅在两个或多个维度中显示关键行为。沙堆模型可以用一维来表示; 然而,一维沙堆模型不是演化到临界状态,而是达到最小稳定状态,其中每个格点都朝向临界坡度。
 
  
 
==Sandpile group沙堆群==
 
==Sandpile group沙堆群==
 
 
Given a configuration <math>z</math>, <math>z(v)\in\mathbb{N}_0</math> for all <math>v\in G\setminus\{s\}</math>, toppling unstable non-sink vertices on a finite connected graph until no unstable non-sink vertex remains leads to a unique ''stable'' configuration <math>z^\circ</math>, which is called the ''stabilization'' of <math>z</math>. Given two stable configurations <math>z</math> and <math>w</math>, we can define the operation <math>z*w \to (z+w)^\circ</math>, corresponding to the vertex-wise addition of grains followed by the stabilization of the resulting sandpile.
 
Given a configuration <math>z</math>, <math>z(v)\in\mathbb{N}_0</math> for all <math>v\in G\setminus\{s\}</math>, toppling unstable non-sink vertices on a finite connected graph until no unstable non-sink vertex remains leads to a unique ''stable'' configuration <math>z^\circ</math>, which is called the ''stabilization'' of <math>z</math>. Given two stable configurations <math>z</math> and <math>w</math>, we can define the operation <math>z*w \to (z+w)^\circ</math>, corresponding to the vertex-wise addition of grains followed by the stabilization of the resulting sandpile.
给定一个配置<math>z</math>,<math>z(v)\in\mathbb{N}u 0</math>对于所有<math>v\in G\setminus\{s\}</math>,在有限连通图上翻转不稳定的非汇顶点,直到没有不稳定的非汇顶点保留,这将导致唯一的“稳定”配置<math>z^\circ</math>,这就是<math>z</math>的“稳定化”。给定两个稳定构型<math>z</math>和<math>w</math>,我们可以定义运算<math>z*w\ to(z+w)^\circ</math>,对应于颗粒的顶点方向相加,然后稳定得到的沙堆。
+
给定一个构型<math>z</math>,<math>z(v)\in\mathbb{N}_0</math>对于所有<math>v\in G\setminus\{s\}</math>,在有限连通图上使不稳定的非沉没顶点崩塌,直到没有不稳定的非汇顶点保留,这将导致唯一的“稳定”配置math>z^\circ</math>,这就是<math>z</math>的“稳定化”。给定两个稳定构型<math>z</math>和<math>w</math>,我们可以定义运算<math>z*w \to (z+w)^\circ</math>,对应于沙粒的顶点方向相加,然后稳定得到的沙堆。
 
 
For two dimensions, the associated conformal field theory is suggested to be symplectic fermions with central charge c&nbsp;=&nbsp;−2.
 
 
 
对于二维空间,相关的共形场论被认为是中心电荷 c =-2的辛型费米子。
 
  
 +
==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])corresponding to the vertex-wise addition of grains翻译存疑
  
 +
Given an arbitrary but fixed ordering of the non-sink vertices, multiple toppling operations, which can e.g. occur during the stabilization of an unstable configuration, can be efficiently encoded by using the [[Laplacian matrix|graph Laplacian]] <math>\Delta=D-A</math>, where <math>D</math> is the [[degree matrix]] and <math>A</math> is the [[adjacency matrix]] of the graph.
  
Given an arbitrary but fixed ordering of the non-sink vertices, multiple toppling operations, which can e.g. occur during the stabilization of an unstable configuration, can be efficiently encoded by using the [[Laplacian matrix|graph Laplacian]] <math>\Delta=D-A</math>, where <math>D</math> is the [[degree matrix]] and <math>A</math> is the [[adjacency matrix]] of the graph.
+
给定一个任意但固定的非沉没顶点的顺序,进行多个崩塌操作,可以通过使用[[拉普拉斯矩阵|图拉普拉斯]]<math>\Delta=D-A</math>高效地编码多个崩塌操作(例如,在不稳定构型的稳定过程中可能发生),其中<math>D</math>是图的[[度矩阵]]<math>A</math>是图的[[邻接矩阵]]
  
给定非汇顶点的任意但固定的顺序,可以通过使用[[拉普拉斯矩阵|图拉普拉斯]]<math>\Delta=D-A</math>高效地编码多个倾倒操作(例如,在稳定不稳定配置期间),其中<math>D</math>是图的[[度矩阵]],<math>A</math>是图的[[邻接矩阵]]。
 
  
 
Deleting the row and column of <math>\Delta</math> corresponding with the sink yields the ''reduced graph Laplacian'' <math>\Delta'</math>. Then, when starting with a configuration <math>z</math> and toppling each vertex <math>v</math> a total of <math>\mathbf{x}(v)\in\mathbb{N}_0</math> times yields the configuration <math>z-\Delta'\boldsymbol{\cdot}~\mathbf{x}</math>, where <math>\boldsymbol{\cdot}</math> is the contraction product. Furthermore, if <math>\mathbf{x}</math> corresponds to the number of times each vertex is toppled during the stabilization of a given configuration <math>z</math>, then
 
Deleting the row and column of <math>\Delta</math> corresponding with the sink yields the ''reduced graph Laplacian'' <math>\Delta'</math>. Then, when starting with a configuration <math>z</math> and toppling each vertex <math>v</math> a total of <math>\mathbf{x}(v)\in\mathbb{N}_0</math> times yields the configuration <math>z-\Delta'\boldsymbol{\cdot}~\mathbf{x}</math>, where <math>\boldsymbol{\cdot}</math> is the contraction product. Furthermore, if <math>\mathbf{x}</math> corresponds to the number of times each vertex is toppled during the stabilization of a given configuration <math>z</math>, then
 +
:<math>z^\circ=z-\Delta'\boldsymbol{\cdot}~\mathbf{x}</math>
  
删除与sink相对应的<math>\Delta</math>的行和列将生成“reduced graph Laplacian”<math>\Delta'</math>。然后,当从一个配置<math>z</math>开始,并推翻每个顶点<math>v</math>时,总的<math>\mathbf{x}(v)\in\mathbb{N}u0</math>得到配置<math>z-\Delta'\boldsymbol{\cdot}~\mathbf{x}</math>,其中<math>\boldsymbol{\cdot}</math>是收缩积。此外,如果<math>\mathbf{x}</math>对应于给定配置稳定期间每个顶点被推翻的次数<math>z</math>,则
+
删除与沉没顶点相对应的 <math>\Delta</math>的行和列,得到简化图拉普拉斯矩阵 <math>\Delta'</math>。然后,当以一个构型<math>z</math> 开始,并将每个顶点<math>v</math>进行总共<math>\mathbf{x}(v)\in\mathbb{N}_0</math>次的崩塌操作时,产生<math>z-\Delta'\boldsymbol{\cdot}~\mathbf{x}</math>构型,其中<math>\boldsymbol{\cdot}</math>是收缩积。此外,如果 <math>\mathbf{x}</math> 对应于在给定构型<math>z</math>的稳定过程中每个顶点产生崩塌的次数,则
 
 
 
:<math>z^\circ=z-\Delta'\boldsymbol{\cdot}~\mathbf{x}</math>
 
:<math>z^\circ=z-\Delta'\boldsymbol{\cdot}~\mathbf{x}</math>
  
The stabilization of chip configurations obeys a form of least action principle: each vertex topples no more than necessary in the course of the stabilization.
 
 
芯片结构的稳定遵循一种最小作用原理: 在稳定过程中,每个顶点的倾斜程度不超过必要的程度。
 
  
 
In this case, <math>\mathbf{x}</math> is referred to as the ''toppling'' or ''odometer function'' (of the stabilization of <math>z</math>).
 
In this case, <math>\mathbf{x}</math> is referred to as the ''toppling'' or ''odometer function'' (of the stabilization of <math>z</math>).
 
+
在这种情况下,<math>\mathbf{x}</math>被称为崩塌或<math>z</math>的稳定过程的里程计函数。
在这种情况下,<math>\mathbf{x}</math>被称为“倾倒”或“里程表函数”(稳定<math>z</math>)。
+
==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])odometer function翻译存疑
 
 
This can be formalized as follows.  Call a sequence of topples legal if it only topples unstable vertices, and stabilizing if it results in a stable configuration.  The standard way of stabilizing the sandpile is to find a maximal legal sequence; i.e., by toppling so long as it is possible.  Such a sequence is obviously stabilizing, and the Abelian property of the sandpile is that all such sequences are equivalent up to permutation of the toppling order; that is, for any vertex v, the number of times v topples is the same in all legal stabilizing sequences.  According to the least action principle, a minimal stabilizing sequence is also equivalent up to permutation of the toppling order to a legal (and still stabilizing) sequence.  In particular, the configuration resulting from a minimal stabilizing sequence is the same as results from a maximal legal sequence.
 
 
 
这可以正式化如下。调用一个合法的顶点序列,如果它只顶点不稳定的顶点,并稳定,如果它的结果是一个稳定的配置。稳定沙堆的标准方法是找到一个最大的法律顺序,也就是说,尽可能地推倒。这样的序列具有明显的稳定性,沙堆的阿贝尔性质是所有这样的序列都等价于倾斜序列的置换,也就是说,对于任何顶点 v,在所有合法的稳定序列中 v 的次数都是相同的。根据最小作用原理,最小稳定序列等价于倾覆序列的置换。特别地,由最小稳定序列产生的构型与由最大法律序列产生的构型是相同的。
 
 
 
 
 
  
 
Under the operation <math>*</math>, the set of recurrent configurations forms an [[abelian group]] isomorphic to the cokernel of the reduced graph Laplacian <math>\Delta'</math>, i.e. to <math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math>, whereby <math>n</math> denotes the number of vertices (including the sink). More generally, the set of stable configurations (transient and recurrent) forms a [[commutative monoid]] under the operation <math>*</math>. The minimal [[Semigroup#Subsemigroups and ideals|ideal]] of this monoid is then isomorphic to the group of recurrent configurations.
 
Under the operation <math>*</math>, the set of recurrent configurations forms an [[abelian group]] isomorphic to the cokernel of the reduced graph Laplacian <math>\Delta'</math>, i.e. to <math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math>, whereby <math>n</math> denotes the number of vertices (including the sink). More generally, the set of stable configurations (transient and recurrent) forms a [[commutative monoid]] under the operation <math>*</math>. The minimal [[Semigroup#Subsemigroups and ideals|ideal]] of this monoid is then isomorphic to the group of recurrent configurations.
 
+
<math>*</math>运算下,递归构形的集合构成一个与约化图拉普拉斯矩阵<math>\Delta'</math>的核同构的阿贝尔群。对于 <math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math>,其中<math>n</math> 表示顶点数(包括沉没顶点)。更一般地说,稳定构型集(瞬态和循环)在<math>*</math>.运算下形成'''<font color="#ff8000"> 交换幺半群Commutative monoid</font>'''。这个幺半群的最小理想同构于循环构型群。
在运算<math>*</math>下,一组递归配置形成一个[[阿贝尔群]]同构于约化图Laplacian<math>\Delta'</math>的余核,即to<math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math>,其中<math>n</math>表示顶点数(包括汇)。更一般地说,在运算<math>*</math>下,稳定组态集(瞬态和递归)形成[[交换幺半群]]。这个幺半群的极小[[半群#子半群和理想|理想]]则同构于循环构形群。
+
==[[用户:Zcy|Zcy]][[用户讨论:Zcy|讨论]])ideal翻译存疑
 
 
More formally, if \mathbf{u} is a vector such that \mathbf{u}(v) is the number of times the vertex v topples during the stabilization (via the toppling of unstable vertices) of a chip configuration z, and \mathbf{n} is an integral vector (not necessarily non-negative) such that z-\mathbf{n}\Delta' is stable, then \mathbf{u}(v) \leq \mathbf{n}(v) for all vertices v.
 
 
 
更形式化地说,如果 mathbf { u }是一个向量,使得 mathbf { u }(v)是在一个芯片组态 z 的稳定(通过不稳定顶点的顶点取样)期间顶点 v 颠倒的次数,而 mathbf { n }是一个积分向量(不一定非负) ,使得 z-mathbf { n } Delta’是稳定的,那么对于所有顶点来说,bf { u }(v) leq mathbf { n }(v)是稳定的。
 
 
 
 
 
  
 
The group formed by the recurrent configurations, as well as the group <math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math> to which the former is isomorphic, is most commonly referred to as the ''sandpile group''. Other common names for the same group are ''critical group'', ''Jacobian group'' or (less often) ''Picard group''. Note, however, that some authors only denote the group formed by the recurrent configurations as the sandpile group, while reserving the name Jacobian group or critical group for the (isomorphic) group defined by <math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math> (or for related isomorphic definitions). Finally, some authors use the name Picard group to refer to the direct product of the sandpile group and <math>\mathbb{Z}</math>, which naturally appears in a cellular automaton closely related to the sandpile model, referred to as the chip firing or dollar game.
 
The group formed by the recurrent configurations, as well as the group <math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math> to which the former is isomorphic, is most commonly referred to as the ''sandpile group''. Other common names for the same group are ''critical group'', ''Jacobian group'' or (less often) ''Picard group''. Note, however, that some authors only denote the group formed by the recurrent configurations as the sandpile group, while reserving the name Jacobian group or critical group for the (isomorphic) group defined by <math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math> (or for related isomorphic definitions). Finally, some authors use the name Picard group to refer to the direct product of the sandpile group and <math>\mathbb{Z}</math>, which naturally appears in a cellular automaton closely related to the sandpile model, referred to as the chip firing or dollar game.
  
由循环构型形成的群,以及与前者同构的群<math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math>,通常被称为“沙堆群”。同一组的其他常用名称是“关键组”、“雅可比组”或(不太常见的)“Picard组”。然而,请注意,有些作者只将由循环配置形成的组表示为沙堆组,而将Jacobian group或critical group保留为由<math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math>定义的(同构)组的名称。最后,一些作者使用Picard group这个名称来表示sandpile组和<math>\mathbb{Z}</math>的直积,它自然出现在与沙堆模型密切相关的元胞自动机中,被称为芯片点火或美元游戏。
+
由循环构形形成的群,以及与之同构的群<math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math>,通常称为'''<font color="#ff8000"> 沙堆群Sandpile group</font>'''。相同群的其它常用名称是“临界群”、“Jacobian群”或(不常见的)“Picard群”。然而,要注意的是,有些作者只把循环构型形成的组称为沙堆组,而为由<math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math>(或相关的同构定义)定义的同构群保留Jacobian群或临界群的称呼。最后,一些作者使用Picard群来指代沙堆群和<math>\mathbb{Z}</math>的直接产物,后者出现在与沙堆模型密切相关的元胞自动机中,被称为'''<font color="#ff8000"> 碎片点火或美元游戏Chip firing or Dollar game</font>'''。
 
 
Animation of the sandpile identity on square grids of increasing size. Black color denotes vertices with 0 grains, green is for 1, purple is for 2, and gold is for 3.
 
  
增大尺寸方形网格上沙堆识别的动画。黑色表示顶点与0颗粒,绿色是为1,紫色是为2,金是为3。
 
  
 
Given the isomorphisms stated above, the order of the sandpile group is the determinant of <math>\Delta'</math>, which by the [[Kirchhoff's theorem|matrix tree theorem]] is the number of spanning trees of the graph.
 
Given the isomorphisms stated above, the order of the sandpile group is the determinant of <math>\Delta'</math>, which by the [[Kirchhoff's theorem|matrix tree theorem]] is the number of spanning trees of the graph.
  
给定上述同构,沙堆群的阶是<math>\Delta'</math>的行列式,根据[[基尔霍夫定理|矩阵树定理]]是图的生成树的数目。
+
给定上述同构,沙堆群的顺序是<math>\Delta'</math>的行列式,根据矩阵树定理,它是图的生成树数目。
 
 
The animation shows the recurrent configuration corresponding to the identity of the sandpile group on different N\times N square grids of increasing sizes N\geq 1, whereby the configurations are rescaled to always have the same physical dimension. Visually, the identities on larger grids seem to become more and more detailed and to "converge to a continuous image". Mathematically, this suggests the existence of scaling-limits of the sandpile identity on square grids based on the notion of weak-* convergence (or some other, generalized notion of convergence). Indeed, existence of scaling limits of recurrent sandpile configurations has been proved by Wesley Pegden and Charles Smart
 
 
 
动画显示了在不同 n 乘以 n 个增大尺寸 n geq1的正方形网格上,与沙堆群同一性相对应的轮回结构,其中的结构被重新调整为始终具有相同的物理尺寸。在视觉上,更大的网格上的身份似乎变得越来越详细,并且“汇聚成一个连续的图像”。在数学上,这表明了基于弱 * 收敛概念(或其他一些广义收敛概念)的方形网格上沙堆恒等式的缩放极限的存在性。实际上,韦斯利 · 佩格登和查尔斯 · 斯玛特已经证明了循环沙堆结构尺度限制的存在性
 
 
 
  
  
 
==Self-organized criticality自组织临界性==
 
==Self-organized criticality自组织临界性==
 
.  In further joint work with Lionel Levine, they use the scaling limit to explain the fractal structure of the sandpile on square grids.
 
 
.在与莱昂内尔 · 莱文的进一步合作中,他们使用尺度极限来解释方形网格上沙堆的分形结构。
 
 
 
{{main|Self-organized criticality}}
 
{{main|Self-organized criticality}}
 
 
The original interest behind the model stemmed from the fact that in simulations on lattices, it is attracted to its [[critical state]], at which point the correlation length of the system and the correlation time of the system go to infinity, without any fine tuning of a system parameter.  This contrasts with earlier examples of critical phenomena, such as the [[phase transition]]s between solid and liquid, or liquid and gas, where the critical point can only be reached by precise tuning (e.g., of temperature).  Hence, in the sandpile model we can say that the criticality is [[self-organization|self-organized]].
 
The original interest behind the model stemmed from the fact that in simulations on lattices, it is attracted to its [[critical state]], at which point the correlation length of the system and the correlation time of the system go to infinity, without any fine tuning of a system parameter.  This contrasts with earlier examples of critical phenomena, such as the [[phase transition]]s between solid and liquid, or liquid and gas, where the critical point can only be reached by precise tuning (e.g., of temperature).  Hence, in the sandpile model we can say that the criticality is [[self-organization|self-organized]].
 
+
模型最初源于这样一个事实,即在晶格上的模拟中,它被吸引到了它的[[临界状态]],此时系统的关联长度和关联时间趋于无穷大,不需要对系统参数进行任何微调。这与早期临界现象的例子形成了对比,例如固体和液体之间,或液体和气体之间的[[相变]],其中临界点只能通过精确调节(例如,温度)来达到。因此,在沙堆模型中,我们可以说临界性是自组织的。
模型背后最初的兴趣源于这样一个事实,即在格子上的模拟中,它被吸引到了它的[[临界状态]],此时系统的关联长度和系统的关联时间趋于无穷大,而不需要对系统参数进行任何微调。这与早期临界现象的例子形成了对比,例如固体和液体之间,或液体和气体之间的[[相变]],其中临界点只能通过精确调节(例如,温度)来达到。因此,在沙堆模型中,我们可以说临界性是[[self-organization | self-organization]]。
 
  
 
Once the sandpile model reaches its critical state there is no correlation between the system's response to a [[wiktionary:perturbation|perturbation]] and the details of a perturbation.  Generally this means that dropping another grain of sand onto the pile may cause nothing to happen, or it may cause the entire pile to collapse in a massive slide.  The model also displays [[1/f noise|1/''&fnof;'' noise]], a feature common to many complex systems in nature.
 
Once the sandpile model reaches its critical state there is no correlation between the system's response to a [[wiktionary:perturbation|perturbation]] and the details of a perturbation.  Generally this means that dropping another grain of sand onto the pile may cause nothing to happen, or it may cause the entire pile to collapse in a massive slide.  The model also displays [[1/f noise|1/''&fnof;'' noise]], a feature common to many complex systems in nature.
 
+
一旦沙堆模型达到其临界状态,系统对扰动的响应和扰动细节之间就没有关联。一般来说,这意味着再往沙堆形成的斜坡上撒一粒沙子可能不会导致任何事情发生,或者可能导致整个沙堆形成的斜坡在大规模滑坡中崩塌。该模型还显示了[[1/f noise|1/''&fnof;'' noise]],这是自然界中许多复杂系统的共同特征。
一旦沙堆模型达到其临界状态,系统对[[w]的响应之间没有关联iktionary:扰动|扰动]]和扰动的细节。一般来说,这意味着再往桩上撒一粒沙子可能不会导致任何事情发生,或者可能导致整个桩体在大规模滑坡中倒塌。该模型还显示了[[1/f noise | 1/'&fnof;''noise]],这是自然界中许多复杂系统的共同特征。
 
 
 
 
 
30 million grains dropped to a site of the infinite square grid, then toppled according to the rules of the sandpile model. White color denotes sites with 0 grains, green is for 1, purple is for 2, gold is for 3. The bounding box is 3967×3967.
 
 
 
3000万颗颗粒落在无限方格网的一个位置,然后根据沙堆模型的规则被推倒。白色表示0颗粒的网站,绿色表示1,紫色表示2,金色表示3。包围盒为3967 × 3967。
 
 
 
 
 
 
 
There exist several generalizations of the sandpile model to infinite grids. A challenge in such generalizations is that, in general, it is not guaranteed anymore that every avalanche will eventually stop. Several of the generalization thus only consider the stabilization of configurations for which this can be guaranteed.
 
 
 
沙堆模型对无限网格有几种推广。这种概括中的一个挑战是,总的来说,不能保证每次雪崩最终都会停止。因此,一些推广只考虑能够保证这一点的构型的稳定性。
 
  
 
This model only displays critical behaviour in two or more dimensions.  The sandpile model can be expressed in 1D; however, instead of evolving to its critical state, the 1D sandpile model instead reaches a minimally stable state where every lattice site goes toward the critical slope.
 
This model only displays critical behaviour in two or more dimensions.  The sandpile model can be expressed in 1D; however, instead of evolving to its critical state, the 1D sandpile model instead reaches a minimally stable state where every lattice site goes toward the critical slope.
 +
此模型仅在两个或多个维度中显示关键行为。沙堆模型可以用一维来表示; 然而,一维沙堆模型不是演化到临界状态,而是达到最小稳定状态,其中每个格点都趋向临界坡度。
  
这个模型只显示两个或更多维度的临界行为。沙堆模型可以用一维来表示,但是,一维沙堆模型并没有进化到临界状态,而是达到了一个最小稳定状态,每个晶格位置都朝着临界坡度方向发展。
+
For two dimensions, it has been hypothesized that the associated [[conformal field theory]] is consists of [[symplectic fermion]]s with a [[central charge]] ''c''&nbsp;=&nbsp;−2.<ref>{{cite journal |author=S. Moghimi-Araghi |author2=M. A. Rajabpour |author3=S. Rouhani |title=Abelian Sandpile Model: a Conformal Field Theory Point of View |arxiv=cond-mat/0410434 |year=2004 |doi=10.1016/j.nuclphysb.2005.04.002 |volume=718|issue=3|journal=Nuclear Physics B|pages=362–370|bibcode = 2005NuPhB.718..362M |s2cid=16233977 }}</ref>
 
+
对于二维,相关共形场理论被认为是中心电荷为''c''&nbsp;=&nbsp;−2的symplectic fermion辛费米子组成的;<ref>{{cite journal |author=S. Moghimi-Araghi |author2=M. A. Rajabpour |author3=S. Rouhani |title=Abelian Sandpile Model: a Conformal Field Theory Point of View |arxiv=cond-mat/0410434 |year=2004 |doi=10.1016/j.nuclphysb.2005.04.002 |volume=718|issue=3|journal=Nuclear Physics B|pages=362–370|bibcode = 2005NuPhB.718..362M |s2cid=16233977 }}</ref>
A rather popular model on the (infinite) square lattice with sites (x,y)\in\mathbb{Z}^2 is defined as follows:
 
 
 
在 mathbb { z } ^ 2中,在(infinite)方格上定义了一个相当流行的位置(x,y)的模型如下:
 
 
 
For two dimensions, the associated conformal field theory is suggested to be symplectic fermions with central charge ''c''&nbsp;=&nbsp;−2.<ref>{{cite journal |author=S. Moghimi-Araghi |author2=M. A. Rajabpour |author3=S. Rouhani |title=Abelian Sandpile Model: a Conformal Field Theory Point of View |arxiv=cond-mat/0410434 |year=2004 |doi=10.1016/j.nuclphysb.2005.04.002 |volume=718|issue=3|journal=Nuclear Physics B|pages=362–370|bibcode = 2005NuPhB.718..362M }}</ref>
 
 
 
对于二维,相关共形场理论被认为是中心电荷为“c”的辛费米子;&nbsp;=&nbsp;−2。<ref>{{cite journal |author=S. Moghimi-Araghi |author2=M. A. Rajabpour |author3=S. Rouhani |title=Abelian Sandpile Model: a Conformal Field Theory Point of View |arxiv=cond-mat/0410434 |year=2004 |doi=10.1016/j.nuclphysb.2005.04.002 |volume=718|issue=3|journal=Nuclear Physics B|pages=362–370|bibcode = 2005NuPhB.718..362M }}</ref>
 
 
 
Begin with some nonnegative configuration of values z(x,y)\in \mathbf{Z} which is finite, meaning
 
 
 
从 mathbf { z }中值 z (x,y)的一些非负配置开始,这意味着
 
  
 
==Properties属性==
 
==Properties属性==
 
\sum_{x,y}z(x,y)<\infty.
 
 
(x,y) < infty.
 
 
 
===Least action principle最小作用原理===
 
===Least action principle最小作用原理===
 
 
The stabilization of chip configurations obeys a form of ''[[principle of least action|least action principle]]'': each vertex topples no more than necessary in the course of the stabilization.<ref name=Fey2010>
 
The stabilization of chip configurations obeys a form of ''[[principle of least action|least action principle]]'': each vertex topples no more than necessary in the course of the stabilization.<ref name=Fey2010>
芯片结构的稳定遵循一种“[[最小作用原理|最小作用原理]]”的形式:每个顶点在稳定过程中不超过必要的倾倒量。<ref name=Fey2010>
 
 
Any site (x,y) with
 
 
任何位置(x,y)
 
 
 
{{cite journal
 
{{cite journal
 
z(x,y)\geq 4
 
 
Z (x,y) geq 4
 
 
 
| author = Fey, A. |author2=Levine, L.|author3=Peres, Y.
 
| author = Fey, A. |author2=Levine, L.|author3=Peres, Y.
 
is unstable and can topple (or fire), sending one of its chips to each of its four neighbors:
 
 
是不稳定的,可以推翻(或火灾) ,发送其中的一个芯片,每四个邻居:
 
 
 
| year=2010
 
| year=2010
 
z(x,y) \rightarrow z(x,y) - 4,
 
 
Z (x,y) right tarrow z (x,y)-4,
 
 
 
| issn=0022-4715
 
| issn=0022-4715
 
z( x \pm 1, y) \rightarrow z( x \pm 1, y) + 1,
 
 
z (x pm 1,y) right tarrow z (x pm 1,y) + 1,
 
 
 
| journal=Journal of Statistical Physics
 
| journal=Journal of Statistical Physics
 
z(x, y \pm 1) \rightarrow z( x, y \pm 1 ) + 1.
 
 
z (x,y pm 1) right tarrow z (x,y pm 1) + 1.
 
 
 
| volume=138
 
| volume=138
 
 
| number=1–3
 
| number=1–3
 
Since the initial configuration is finite, the process is guaranteed to terminate, with the grains scattering outward.
 
 
由于初始构型是有限的,这个过程保证终止,颗粒向外散射。
 
 
 
| doi=10.1007/s10955-009-9899-6
 
| doi=10.1007/s10955-009-9899-6
 
 
| title=Growth Rates and Explosions in Sandpiles
 
| title=Growth Rates and Explosions in Sandpiles
 +
| pages=143–159|arxiv = 0901.3805 |bibcode = 2010JSP...138..143F |s2cid=7180488}}</ref>
  
A popular special case of this model is given when the initial configuration is zero for all vertices except the origin. If the origin carries a huge number of grains of sand, the configuration after relaxation forms fractal patterns (see figure). When letting the initial number of grains at the origin go to infinity, the rescaled stabilized configurations were shown to converge to a unique limit. The extended sandpile model is defined nearly exactly the same as the usual sandpile model (i.e. the original Bak–Tang–Wiesenfeld model  in which, instead of a discrete number of particles in each site x, there is a real number s(x) representing the amount of mass on the site. In case such mass is negative, one can understand it as a hole. The topple occurs whenever a site has mass larger than 1; it topples the excess evenly between its neighbors resulting in the situation that, if a site is full at time t, it will be full for all later times.
+
芯片结构的稳定遵循一种“[[最小作用原理|最小作用原理]]”的形式:每个顶点在稳定过程中不超过必要的崩塌量。
 
 
当除了原点之外的所有顶点的初始配置为零时,给出了这个模型的一个流行的特殊情况。如果原点携带大量的沙粒,松弛后的结构形成分形图案(见图)。当初始颗粒数达到无穷大时,重新标度稳定的构型会收敛到唯一的极限。扩展沙堆模型的定义与通常的沙堆模型几乎完全相同(即:。在最初的 Bak-Tang-Wiesenfeld 模型中,每个站点 x 中没有离散的粒子数,而是有一个实数 s (x)代表站点的质量。如果这样的质量是负的,我们可以把它理解为一个空洞。每当一个站点的质量大于1时,就会出现倒塌现象; 如果一个站点在 t 时满了,那么其后的所有时间里都会满了。
 
 
 
| pages=143–159|arxiv = 0901.3805 |bibcode = 2010JSP...138..143F }}</ref>
 
  
 
This can be formalized as follows.  Call a sequence of topples ''legal'' if it only topples unstable vertices, and ''stabilizing'' if it results in a stable configuration.  The standard way of stabilizing the sandpile is to find a maximal legal sequence; i.e., by toppling so long as it is possible.  Such a sequence is obviously stabilizing, and the Abelian property of the sandpile is that all such sequences are equivalent up to permutation of the toppling order; that is, for any vertex <math>v</math>, the number of times <math>v</math> topples is the same in all legal stabilizing sequences.  According to the least action principle, a '''minimal stabilizing''' sequence is also equivalent up to permutation of the toppling order to a legal (and still stabilizing) sequence.  In particular, the configuration resulting from a minimal stabilizing sequence is the same as results from a maximal legal sequence.
 
This can be formalized as follows.  Call a sequence of topples ''legal'' if it only topples unstable vertices, and ''stabilizing'' if it results in a stable configuration.  The standard way of stabilizing the sandpile is to find a maximal legal sequence; i.e., by toppling so long as it is possible.  Such a sequence is obviously stabilizing, and the Abelian property of the sandpile is that all such sequences are equivalent up to permutation of the toppling order; that is, for any vertex <math>v</math>, the number of times <math>v</math> topples is the same in all legal stabilizing sequences.  According to the least action principle, a '''minimal stabilizing''' sequence is also equivalent up to permutation of the toppling order to a legal (and still stabilizing) sequence.  In particular, the configuration resulting from a minimal stabilizing sequence is the same as results from a maximal legal sequence.
 +
这可以形式化如下。如果一个崩塌序列只推倒不稳定的顶点,则称其为“合法的”,使用一组合法的顶点序列,如果它的结果是一个稳定的构型,则称其为“稳定的”。稳定沙堆的标准方法是找到一个最大的合法崩塌序列,也就是说,让崩塌序列尽可能地长。这种序列具有明显的稳定性,沙堆的可交换性质是所有这些序列都等价于倾斜序列的置换,也就是说,对于任何顶点<math>v</math>,在所有合法的稳定序列中<math>v</math>的崩塌次数都是相同的。根据最小作用原理,最小稳定序列等价于合法的(且稳定的)崩塌序列的置换。特别地,由最小稳定序列产生的构型与由最大合法序列产生的构型是相同的。
  
这可以形式化如下。如果一个倒转序列只推翻不稳定的顶点,则称其为“合法”;如果它导致稳定的配置,则称之为“稳定”。稳定沙堆的标准方法是找到一个最大的合法序列,即只要有可能就倾倒。这样的序列是明显稳定的,沙堆的阿贝尔性质是,所有这些序列都等价于倾倒顺序的置换;也就是说,对于任何顶点<math>v</math>,在所有合法的稳定化序列中,<math>v</math>倒下的次数是相同的。根据最小作用原理,“最小稳定”序列也相当于将倾倒顺序排列成合法(且仍在稳定)序列。特别地,由最小稳定序列得到的配置与从最大合法序列得到的配置相同。
 
 
The Bak–Tang–Wiesenfeld sandpile was mentioned on the Numb3rs episode "Rampage," as mathematician Charlie Eppes explains to his colleagues a solution to a criminal investigation.
 
 
数学家查理 · 埃普斯向他的同事们解释了一个犯罪调查的解决方案,贝克-唐-维森菲尔德沙堆在 Numb3rs 节目“暴怒”中被提到。
 
  
 
More formally, if <math>\mathbf{u}</math> is a vector such that <math>\mathbf{u}(v)</math> is the number of times the vertex <math>v</math> topples during the stabilization (via the toppling of unstable vertices) of a chip configuration <math>z</math>, and <math>\mathbf{n}</math> is an integral vector (not necessarily non-negative) such that <math>z-\mathbf{n}\Delta'</math> is stable, then <math>\mathbf{u}(v) \leq \mathbf{n}(v)</math> for all vertices <math>v</math>.
 
More formally, if <math>\mathbf{u}</math> is a vector such that <math>\mathbf{u}(v)</math> is the number of times the vertex <math>v</math> topples during the stabilization (via the toppling of unstable vertices) of a chip configuration <math>z</math>, and <math>\mathbf{n}</math> is an integral vector (not necessarily non-negative) such that <math>z-\mathbf{n}\Delta'</math> is stable, then <math>\mathbf{u}(v) \leq \mathbf{n}(v)</math> for all vertices <math>v</math>.
 
+
更正式地说,如果<math>\mathbf{u}</math>是一个向量, <math>\mathbf{u}(v)</math>是碎片构型<math>z</math>在稳定过程中(通过不稳定顶点的崩塌)顶点<math>v</math>崩塌的次数,并且<math>\mathbf{n}</math>是一个积分向量(不一定是非负的),使得<math>z-\mathbf{n}\Delta'</math>是稳定的,那么对于所有顶点<math>v</math>,<math>\mathbf{u}(v) \leq \mathbf{n}(v)</math>。
更正式地说,如果<math>\mathbf{u}</math>是一个向量,使得<math>\mathbf{u}(v)</math>是在芯片配置<math>z的稳定过程中(通过不稳定顶点的倒转)顶点<math>v</math>翻转的次数,并且<math>\mathbf{n}</math>是一个积分向量(不一定是非负的),使得<math>z-\mathbf{n}\Delta'</math>是稳定的,那么对于所有顶点<math>v</math>。
+
==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])<math>\mathbf{n}</math> is an integral vector (not necessarily non-negative)这一句话的翻译存疑。
 
+
=== Scaling limits缩放限制===
The computer game Hexplode is based around the Abelian sandpile model on a finite hexagonal grid where instead of random grain placement, grains are placed by players.
 
 
 
计算机游戏 Hexplode 是基于有限六边形网格上的阿贝尔沙堆模型,在这个模型中,颗粒由玩家放置,而不是随机的颗粒放置。
 
 
 
=== Scaling limits 缩放限制===
 
 
 
 
[[File:Scaling sandpile identity.gif|thumb|Animation of the sandpile identity on square grids of increasing size. Black color denotes vertices with 0 grains, green is for 1, purple is for 2, and gold is for 3.]]
 
[[File:Scaling sandpile identity.gif|thumb|Animation of the sandpile identity on square grids of increasing size. Black color denotes vertices with 0 grains, green is for 1, purple is for 2, and gold is for 3.]]
 
+
[[File:Scaling sandpile identity.gif|thumb|沙堆标识在方形网格不断增加的动画。 黑色表示沙粒数为0的顶点,绿色表示沙粒数为1,紫色表示沙粒数为2,金色表示沙粒数为3。]]
[[文件:缩放沙堆标识.gif|拇指|动画沙堆身份在正方形网格上不断扩大。黑色表示0颗粒的顶点,绿色表示1,紫色表示2,金色表示3。]]
 
  
 
The animation shows the recurrent configuration corresponding to the identity of the sandpile group on different <math>N\times N</math> square grids of increasing sizes <math>N\geq 1</math>, whereby the configurations are rescaled to always have the same physical dimension. Visually, the identities on larger grids seem to become more and more detailed and to "converge to a continuous image". Mathematically, this suggests the existence of scaling-limits of the sandpile identity on square grids based on the notion of weak-* convergence (or some other, generalized notion of convergence). Indeed, existence of scaling limits of recurrent sandpile configurations has been proved by Wesley Pegden and Charles Smart
 
The animation shows the recurrent configuration corresponding to the identity of the sandpile group on different <math>N\times N</math> square grids of increasing sizes <math>N\geq 1</math>, whereby the configurations are rescaled to always have the same physical dimension. Visually, the identities on larger grids seem to become more and more detailed and to "converge to a continuous image". Mathematically, this suggests the existence of scaling-limits of the sandpile identity on square grids based on the notion of weak-* convergence (or some other, generalized notion of convergence). Indeed, existence of scaling limits of recurrent sandpile configurations has been proved by Wesley Pegden and Charles Smart
 
动画显示了与不同的<math>N\times N</math>大小不断增大的<math>N\geq 1</math>正方形网格上的沙堆组标识相对应的重复配置,从而重新缩放配置以始终具有相同的物理维度。从视觉上看,更大网格上的身份似乎变得越来越详细,并且“收敛到一个连续的图像”。从数学上讲,这表明基于弱收敛的概念(或其他一些广义的收敛概念),正方形网格上沙堆恒等式存在标度极限。事实上,Wesley-Pegden和Charles-Smart已经证明了循环沙堆结构标度极限的存在性
 
 
 
<ref name=Pegden2016>{{cite arxiv |last1=Pegden |first1=Wesley |last2=Smart |first2=Charles |title=Stability of patterns in the Abelian sandpile.|eprint=1708.09432 | date=2017  | ref=Pegden2017|class=math.AP }}</ref>
 
<ref name=Pegden2016>{{cite arxiv |last1=Pegden |first1=Wesley |last2=Smart |first2=Charles |title=Stability of patterns in the Abelian sandpile.|eprint=1708.09432 | date=2017  | ref=Pegden2017|class=math.AP }}</ref>
 +
.<ref name=Pegden2013>{{cite journal |last1=Pegden |first1=Wesley |last2=Smart |first2=Charles |title=Convergence of the Abelian sandpile |journal=Duke Mathematical Journal |date=2013 |volume=162 |issue=4 |pages=627–642 |doi=10.1215/00127094-2079677 |ref=Pegden2013|arxiv=1105.0111 |s2cid=13027232 }}</ref>  In further joint work with Lionel Levine, they use the scaling limit to explain the fractal structure of the sandpile on square grids.<ref name=Levine2016>{{cite journal |last1=Levine |first1=Lionel |last2=Pegden |first2=Wesley |title=Apollonian structure in the Abelian sandpile |journal=Geometric and Functional Analysis |date=2016 |volume=26 |issue=1 |pages=306–336 |doi=10.1007/s00039-016-0358-7 |ref=Levine2016|hdl=1721.1/106972 |s2cid=119626417 |hdl-access=free }}</ref>
 +
动画显示了对应网格尺寸<math>N\geq 1</math>不断增大,不同大小的<math>N\times N</math>正方形网格上的沙堆群标识的重复配置,从而重新缩放配置以始终具有相同的物理维度。从视觉上看,更大网格上的标识似乎变得越来越详细,并且“收敛到一个连续的图像”。从数学上讲,这表明基于弱收敛的概念(或其他一些广义的收敛概念),正方形网格上沙堆恒等式存在标度极限。事实上,Wesley-Pegden和Charles-Smart已经证明了循环沙堆结构标度极限的存在性。<ref name=Pegden2016>{{cite arxiv |last1=Pegden |first1=Wesley |last2=Smart |first2=Charles |title=Stability of patterns in the Abelian sandpile.|eprint=1708.09432 | date=2017  | ref=Pegden2017|class=math.AP }}</ref>
 +
.<ref name=Pegden2013>{{cite journal |last1=Pegden |first1=Wesley |last2=Smart |first2=Charles |title=Convergence of the Abelian sandpile |journal=Duke Mathematical Journal |date=2013 |volume=162 |issue=4 |pages=627–642 |doi=10.1215/00127094-2079677 |ref=Pegden2013|arxiv=1105.0111 |s2cid=13027232 }}</ref>  In further joint work with Lionel Levine, they use the scaling limit to explain the fractal structure of the sandpile on square grids.<ref name=Levine2016>{{cite journal |last1=Levine |first1=Lionel |last2=Pegden |first2=Wesley |title=Apollonian structure in the Abelian sandpile |journal=Geometric and Functional Analysis |date=2016 |volume=26 |issue=1 |pages=306–336 |doi=10.1007/s00039-016-0358-7 |ref=Levine2016|hdl=1721.1/106972 |s2cid=119626417 |hdl-access=free }}</ref>
  
.<ref name=Pegden2013>{{cite journal |last1=Pegden |first1=Wesley |last2=Smart |first2=Charles |title=Convergence of the Abelian sandpile |journal=Duke Mathematical Journal |date=2013 |volume=162 |issue=4 |pages=627–642 |doi=10.1215/00127094-2079677 |ref=Pegden2013|arxiv=1105.0111 }}</ref>  In further joint work with Lionel Levine, they use the scaling limit to explain the fractal structure of the sandpile on square grids.<ref name=Levine2016>{{cite journal |last1=Levine |first1=Lionel |last2=Pegden |first2=Wesley |title=Apollonian structure in the Abelian sandpile |journal=Geometric and Functional Analysis |date=2016 |volume=26 |issue=1 |pages=306–336 |doi=10.1007/s00039-016-0358-7 |ref=Levine2016|hdl=1721.1/106972 |hdl-access=free }}</ref>
 
  
  
  
 
== Generalizations and related models归纳与相关模型==
 
== Generalizations and related models归纳与相关模型==
 
+
=== Sandpile models on infinite grids有向图上的沙堆模型===
      | author = Per Bak
 
 
 
作者: Per Bak
 
 
 
=== Sandpile models on infinite grids 无限网格上的沙堆模型===
 
 
 
| year = 1996
 
 
 
1996年
 
 
 
 
[[File:Sandpile on infinite grid, 3e7 grains.png|thumb|right|upright=1.25|30 million grains dropped to a site of the infinite square grid, then toppled according to the rules of the sandpile model. White color denotes sites with 0 grains, green is for 1, purple is for 2, gold is for 3. The bounding box is 3967×3967.]]
 
[[File:Sandpile on infinite grid, 3e7 grains.png|thumb|right|upright=1.25|30 million grains dropped to a site of the infinite square grid, then toppled according to the rules of the sandpile model. White color denotes sites with 0 grains, green is for 1, purple is for 2, gold is for 3. The bounding box is 3967×3967.]]
 
+
[[File:Sandpile on infinite grid, 3e7 grains.png|thumb|right|upright=1.25|3000万粒沙粒落在无限方形网格的一个位置上,然后按照沙堆模型的规则产生崩塌。白色表示0颗沙粒位置,绿色表示1颗,紫色表示2颗,金色表示3颗。图中框的大小是3967×3967。]]
[[文件:沙堆无限网格,3e7谷物.png|拇指||直立=1.25 | 3000万颗谷物落在无限方格网中,然后根据沙堆模型的规则倾倒。白色表示0粒位,绿色代表1,紫色代表2,金色代表3。边框为3967×3967。]]
 
 
 
| title = How Nature Works: The Science of Self-Organized Criticality
 
 
 
自然是如何运作的: 自组织临界性的科学
 
  
 
There exist several generalizations of the sandpile model to infinite grids. A challenge in such generalizations is that, in general, it is not guaranteed anymore that every avalanche will eventually stop. Several of the generalization thus only consider the stabilization of configurations for which this can be guaranteed.
 
There exist several generalizations of the sandpile model to infinite grids. A challenge in such generalizations is that, in general, it is not guaranteed anymore that every avalanche will eventually stop. Several of the generalization thus only consider the stabilization of configurations for which this can be guaranteed.
  
沙堆模型可以推广到无限网格。这种归纳法的一个挑战是,一般来说,不再保证每次雪崩最终都会停止。因此,一些一般化方法只考虑了能保证这一点的构型的稳定性。
+
沙堆模型可以推广到无限网格中。这种归纳法的一个挑战是,一般来说,不再保证每次雪崩最终都会停止。因此,一些一般化方法只考虑了构型的稳定性,因为这一点是能保证的。
 
 
| publisher = Copernicus
 
 
 
| publisher = Copernicus
 
 
 
 
 
 
 
| location = New York
 
 
 
| 地点: 纽约
 
  
 
A rather popular model on the (infinite) square lattice with sites <math>(x,y)\in\mathbb{Z}^2</math> is defined as follows:
 
A rather popular model on the (infinite) square lattice with sites <math>(x,y)\in\mathbb{Z}^2</math> is defined as follows:
 
+
在(无限)方格上有一个相当流行的模型,其位置<math>(x,y)\in\mathbb{Z}^2</math>定义如下:
在(无限)方格上有一个相当流行的模型,其位置<math>(x,y)\in\mathbb{Z}^2</math>定义如下:
 
 
 
| isbn = 978-0-387-94791-4
 
 
 
| isbn = 978-0-387-94791-4
 
 
 
 
 
 
 
}}
 
 
 
}}
 
  
 
Begin with some nonnegative configuration of values <math>z(x,y)\in \mathbf{Z}</math> which is finite, meaning
 
Begin with some nonnegative configuration of values <math>z(x,y)\in \mathbf{Z}</math> which is finite, meaning
 
+
从\mathbf{z}</math>中有限值<math>z(x,y)\in \mathbf{Z}</math>的一些非负配置开始,这意味着
从\mathbf{z}</math>中的值<math>z(x,y)\in \mathbf{Z}</math>的一些非负配置开始,这意味着
 
  
 
:<math>\sum_{x,y}z(x,y)<\infty.</math>
 
:<math>\sum_{x,y}z(x,y)<\infty.</math>
 
      |author1=Per Bak |author2=Chao Tang |author3=Kurt Wiesenfeld | year = 1987
 
 
1 = Per Bak | author2 = Chao Tang | author3 = Kurt Wiesenfeld | year = 1987
 
 
 
 
| title = Self-organized criticality: an explanation of 1/&fnof; noise
 
 
| title = 自组织临界性: 对噪音的解释
 
  
 
Any site <math>(x,y)</math> with
 
Any site <math>(x,y)</math> with
 
+
任何位置<math>(x,y)</math>有
| journal = Physical Review Letters
 
 
 
| journal = Physical Review Letters
 
 
 
 
:<math>z(x,y)\geq 4</math>
 
:<math>z(x,y)\geq 4</math>
 
| volume = 59
 
 
59
 
 
 
is ''unstable'' and can ''topple'' (or ''fire''), sending one of its chips to each of its four neighbors:
 
is ''unstable'' and can ''topple'' (or ''fire''), sending one of its chips to each of its four neighbors:
 
+
就是“不稳定的”,并且会产生崩塌,将它位置上的沙粒分发给它的四个邻居:
| issue = 4
 
 
 
第四期
 
 
 
 
:<math>z(x,y) \rightarrow z(x,y) - 4,</math>
 
:<math>z(x,y) \rightarrow z(x,y) - 4,</math>
 
| pages = 381&ndash;384
 
 
381-- 384
 
 
 
:<math>z( x \pm 1, y) \rightarrow z( x \pm 1, y) + 1,</math>
 
:<math>z( x \pm 1, y) \rightarrow z( x \pm 1, y) + 1,</math>
 
| doi = 10.1103/PhysRevLett.59.381
 
 
| doi = 10.1103/physrvlett. 59.381
 
 
 
:<math>z(x, y \pm 1) \rightarrow z( x, y \pm 1 ) + 1.</math>
 
:<math>z(x, y \pm 1) \rightarrow z( x, y \pm 1 ) + 1.</math>
 
| bibcode=1987PhRvL..59..381B | pmid=10035754}}
 
 
1987/phrvl. . 59. . 381 b | pmid = 10035754}
 
 
 
  
 
Since the initial configuration is finite, the [[Action (philosophy)|process]] is guaranteed to terminate, with the grains scattering outward.
 
Since the initial configuration is finite, the [[Action (philosophy)|process]] is guaranteed to terminate, with the grains scattering outward.
 
+
由于初始构型是有限的,这一过程必然会随着沙粒向外散布终止。
      |author1=Per Bak |author2=Chao Tang |author3=Kurt Wiesenfeld | year = 1988
 
 
 
1 = Per Bak | author2 = Chao Tang | author3 = Kurt Wiesenfeld | year = 1988
 
 
 
 
 
 
 
| title = Self-organized criticality
 
 
 
自组织临界性
 
  
 
A popular special case of this model is given when the initial configuration is zero for all vertices except the origin. If the origin carries a huge number of grains of sand, the configuration after relaxation forms fractal patterns (see figure). When letting the initial number of grains at the origin go to infinity, the rescaled stabilized configurations were shown to converge to a unique limit.<ref name="Pegden2013" /><ref name="Levine2016" />
 
A popular special case of this model is given when the initial configuration is zero for all vertices except the origin. If the origin carries a huge number of grains of sand, the configuration after relaxation forms fractal patterns (see figure). When letting the initial number of grains at the origin go to infinity, the rescaled stabilized configurations were shown to converge to a unique limit.<ref name="Pegden2013" /><ref name="Levine2016" />
 +
给出了该模型的一个常见特例,即除原点外的所有顶点的初始配置都为零。如果原点放置大量沙粒,松弛后的构型形成分形图案(见图)。当初始颗粒数趋于无穷时,重缩放的稳定构型收敛到唯一极限。<ref name="Pegden2013" /><ref name="Levine2016" />
  
| journal = Physical Review A
+
=== Sandpile models on directed graphs有向图上的沙堆模型===
 
 
| journal = Physical Review a
 
 
 
 
 
 
 
| volume = 38
 
 
 
38
 
 
 
=== Sandpile models on directed graphs 有向图上的沙堆模型===
 
 
 
| issue = 1
 
 
 
1
 
 
 
 
The sandpile model can be generalized to arbitrary directed multigraphs. The rules are that any vertex <math>v</math> with  
 
The sandpile model can be generalized to arbitrary directed multigraphs. The rules are that any vertex <math>v</math> with  
 
+
沙堆模型可以推广到任意有向多重图。规则是任何顶点<math>v</math>
沙堆模型可以推广到任意有向多图。规则是任何顶点<math>v</math>
 
 
 
| pages = 364&ndash;374
 
 
 
364-- 374
 
 
 
 
:<math>z(v)\geq \deg^{+}(v)</math>
 
:<math>z(v)\geq \deg^{+}(v)</math>
 
| doi = 10.1103/PhysRevA.38.364
 
 
| doi = 10.1103/PhysRevA. 38.364
 
 
 
is unstable; toppling again sends chips to each of its neighbors, one along each outgoing edge:
 
is unstable; toppling again sends chips to each of its neighbors, one along each outgoing edge:
 
+
则是不稳定的;崩塌将它的碎片沿着边的输出方向,分发给它的邻居:
为不稳定;再次倾倒会将碎片发送给每个邻居,沿每个出线边缘各一个:
 
 
 
|pmid=9900174 | bibcode=1988PhRvA..38..364B
 
 
 
9900174 | bibcode = 1988PhRvA. . 38. . 364 b
 
 
 
 
:<math>z(v) \rightarrow z(v) - \deg^{+}(v) + \deg(v,v)</math>
 
:<math>z(v) \rightarrow z(v) - \deg^{+}(v) + \deg(v,v)</math>
 
}}
 
 
}}
 
 
 
and, for each <math>u\neq v</math>:
 
and, for each <math>u\neq v</math>:
 
+
并且,对于每个<math>u\neq v</math>
并且,对每个<math>u\neq v</math>:
 
 
 
 
:<math>z(u) \rightarrow z(u) + \deg(v,u)</math>
 
:<math>z(u) \rightarrow z(u) + \deg(v,u)</math>
 
 
where <math>\deg(v,u)</math> is the number of edges from <math>v</math> to <math>u</math>.
 
where <math>\deg(v,u)</math> is the number of edges from <math>v</math> to <math>u</math>.
 
+
其中,<math>\deg(v,u)</math>是从<math>v</math>到<math>u</math>的边数。
其中<math>\deg(v,u)</math>是从<math>v</math>到<math>u</math>的边数。
 
 
 
| location=Providence, RI | publisher=American Mathematical Society | isbn=978-1-4704-1021-6 | year=2013 | citeseerx=10.1.1.760.283 }}
 
 
 
| location = Providence,RI | publisher = American Mathematical Society | isbn = 978-1-4704-1021-6 | year = 2013 | citeserx = 10.1.1.760.283}
 
  
 
In this case the Laplacian matrix is not symmetric. If we specify a sink <math>s</math> such that there is a path from every other vertex to <math>s</math>, then the stabilization operation on finite graphs is well-defined and the sandpile group can be written
 
In this case the Laplacian matrix is not symmetric. If we specify a sink <math>s</math> such that there is a path from every other vertex to <math>s</math>, then the stabilization operation on finite graphs is well-defined and the sandpile group can be written
 
+
在这种情况下,拉普拉斯矩阵是不对称的。如果我们指定一个沉没顶点<math>s</math>,使得每一个顶点都有一条到<math>s</math>的路径,那么有限图上的稳定操作是定义良好的,并且沙堆群可以像之前一样被写出来
在这种情况下,拉普拉斯矩阵是不对称的。如果我们指定一个sink<math>s</math>,使得每一个顶点都有一条到<math>s</math>的路径,那么有限图上的稳定操作是定义良好的,并且沙堆群可以被写出来
 
  
 
:<math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math>
 
:<math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math>
 
 
as before.
 
as before.
如上。
 
 
  
 
The order of the sandpile group is again the determinant of <math>\Delta'</math>, which by the general version of the [[Kirchhoff's theorem|matrix tree theorem]] is the number of oriented [[spanning tree]]s rooted at the sink.
 
The order of the sandpile group is again the determinant of <math>\Delta'</math>, which by the general version of the [[Kirchhoff's theorem|matrix tree theorem]] is the number of oriented [[spanning tree]]s rooted at the sink.
 +
沙堆群的顺序又是<math>\Delta'</math>的行列式,根据[[矩阵树定理]]的一般版本,它是根在沉没顶点的有向[[spanning tree]]生成树的数目。
 +
==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])The order of the sandpile group翻译存疑。
  
沙堆群的顺序又是<math>\Delta'</math>的行列式,根据[[Kirchhoff定理|矩阵树定理]]的一般版本,它是这一汇顶点处有向的[[生成树]]的根数。
+
=== The extended sandpile model扩展沙堆模型===
 
 
Category:Self-organization
 
 
 
类别: 自我组织
 
 
 
 
 
 
 
Category:Phase transitions
 
 
 
类别: 阶段转变
 
 
 
=== The extended sandpile model 扩展沙堆模型===
 
 
 
Category:Dynamical systems
 
 
 
类别: 动力系统
 
 
 
 
[[File:Harmonic Sandpile Dynamics.gif|thumb|Sandpile dynamics induced by the harmonic function H=x*y on a 255x255 square grid.]]
 
[[File:Harmonic Sandpile Dynamics.gif|thumb|Sandpile dynamics induced by the harmonic function H=x*y on a 255x255 square grid.]]
 +
[[File:Harmonic Sandpile Dynamics.gif|thumb|由谐波函数H=x*y在255x255方格网格上引起的沙堆动力学。]]
  
Category:Critical phenomena
+
To better understand the structure of the sandpile group for different finite convex grids <math>\Gamma\subset\mathbb{Z}^2</math> of the standard square lattice <math>\mathbb{Z}^2</math>, Lang and Shkolnikov introduced the ''extended sandpile model'' in 2019.<ref name=Lang2019>{{Cite journal|last1=Lang|first1=Moritz|last2=Shkolnikov|first2=Mikhail|date=2019-02-19|title=Harmonic dynamics of the abelian sandpile|journal=Proceedings of the National Academy of Sciences|language=en|volume=116|issue=8|pages=2821–2830|doi=10.1073/pnas.1812015116|pmid=30728300|pmc=6386721|issn=0027-8424}}</ref> The extended sandpile model is defined nearly exactly the same as the ''usual sandpile model'' (i.e. the original Bak–Tang–Wiesenfeld model <ref name="Bak1987" />), except that vertices at the boundary <math>\partial\Gamma</math> of the grid are now allowed to carry a non-negative real number of grains. In contrast, vertices in the interior of the grid are still only allowed to carry integer numbers of grains. The toppling rules remain unchanged, i.e. both interior and boundary vertices are assumed to become unstable and topple if the grain number reaches or exceeds four.
  
范畴: 关键现象
+
为了更好地理解不同有限凸网格<math>\Gamma\subset\mathbb{Z}^2</math>的沙堆群的结构,Lang和Shkolnikov在2019年提出了“扩展沙堆模型”。<ref name=Lang2019>{{Cite journal|last1=Lang|first1=Moritz|last2=Shkolnikov|first2=Mikhail|date=2019-02-19|title=Harmonic dynamics of the abelian sandpile|journal=Proceedings of the National Academy of Sciences|language=en|volume=116|issue=8|pages=2821–2830|doi=10.1073/pnas.1812015116|pmid=30728300|pmc=6386721|issn=0027-8424}}</ref>扩展沙堆模型的定义与“通常的沙堆模型”几乎完全相同(即原始的Bak–Tang–Wiesenfeld模型<ref name="Bak1987" />),除了网格边界<math>\partial\Gamma</math>的顶点现在允许放置非负实数的沙粒。相比之下,网格内部的顶点仍然只允许放置整数个粒子。崩塌规则保持不变,即假设当沙粒数达到或超过4时,内部顶点和边界顶点都变得不稳定并发生崩塌。
  
To better understand the structure of the sandpile group for different finite convex grids <math>\Gamma\subset\mathbb{Z}^2</math> of the standard square lattice <math>\mathbb{Z}^2</math>, Lang and Shkolnikov introduced the ''extended sandpile model'' in 2019.<ref name=Lang2019>{{Cite journal|last=Lang|first=Moritz|last2=Shkolnikov|first2=Mikhail|date=2019-02-19|title=Harmonic dynamics of the abelian sandpile|journal=Proceedings of the National Academy of Sciences|language=en|volume=116|issue=8|pages=2821–2830|doi=10.1073/pnas.1812015116|pmid=30728300|pmc=6386721|issn=0027-8424}}</ref> The extended sandpile model is defined nearly exactly the same as the ''usual sandpile model'' (i.e. the original Bak–Tang–Wiesenfeld model <ref name="Bak1987" />), except that vertices at the boundary <math>\partial\Gamma</math> of the grid are now allowed to carry a non-negative real number of grains. In contrast, vertices in the interior of the grid are still only allowed to carry integer numbers of grains. The toppling rules remain unchanged, i.e. both interior and boundary vertices are assumed to become unstable and topple if the grain number reaches or exceeds four.
 
  
为了更好地理解不同有限凸网格的沙堆群的结构,Lang和Shkolnikov在2019年推出了“扩展沙堆模型”。<ref name=Lang2019>{Cite journal | last=Lang | first=Moritz | last2=Shkolnikov | first2=Mikhail | date=2019-02-19 | title=阿贝尔沙堆的谐波动力学| journal=National Academy of the National AcademySciences | language=en | volume=116 | issue=8 | pages=2821–2830 | doi=10.1073/pnas.1812015116 | pmid=30728300 | pmi=6386721 | issn=0027-8424}</ref>扩展沙堆模型的定义与“通常的沙堆模型”几乎完全相同(即原始的Bak–Tang–Wiesenfeld模型<ref name=“Bak1987”/>),除了网格边界<math>\partial\Gamma</math>的顶点现在允许携带非负实数的晶粒。相反,网格内部的顶点仍然只允许携带整数个粒子。倾倒规则保持不变,即假定内部和边界顶点都变得不稳定,并且当晶粒数达到或超过4时会发生倾倒。
+
Also the recurrent configurations of the extended sandpile model form an abelian group, referred to as the ''extended sandpile group'', of which the usual sandpile group is a [[discrete subgroup]]. Different to the usual sandpile group, the extended sandpile group is however a continuous [[Lie group]]. Since it is generated by only adding grains of sand to the boundary <math>\partial\Gamma</math> of the grid, the extended sandpile group furthermore has the [[topological group|topology]] of a [[torus]] of dimension <math>|\partial\Gamma|</math> and a volume given by the order of the usual sandpile group.<ref name="Lang2019" />
 +
扩展沙堆模型的递归构型也形成了一个阿贝尔群,称为“扩展沙堆群”,通常的扩展沙堆群是一个[[离散子群]]。与通常的沙堆群不同,扩展沙堆群是一个连续的[[李群]]。只因为它是由添加沙粒到网格的边界<math>\partial\Gamma</math>上形成的,扩展后的沙堆群还具有维度<math>|\partial\Gamma|</math>的环面拓扑结构,并且按通常沙堆组的顺序给出的体积。<ref name="Lang2019" />
 +
==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])a volume given by the order of the usual sandpile group.翻译存疑。
  
Category:Nonlinear systems
+
Of specific interest is the question how the recurrent configurations dynamically change along the continuous [[geodesic]]s of this torus passing through the identity. This question leads to the definition of the sandpile dynamics
 +
特别感兴趣的问题是循环构型如何通过恒等式,沿着这个环面的连续[[测地线]]动态变化的问题。这个问题引出了沙堆动力学的定义
 +
==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])identity在整篇文章中的翻译需进行统一,如何翻译??同一性,恒等式??
 +
:<math>D_H(t)=(I-t\Delta H)^\circ</math> (扩展沙堆模型)
 +
respectively
 +
:<math>\tilde{D}_H(t)=(I+\lfloor-t\Delta H\rfloor)^\circ</math> (普通沙堆模型)
  
类别: 非线性系统
+
induced by the integer-valued [[harmonic function]] <math>H</math> at time <math>t\in\mathbb{R}\setminus\mathbb{Z}</math>, with <math>I</math> the identity of the sandpile group and <math>\lfloor.\rfloor</math> the floor function.<ref name="Lang2019" />
 +
For low-order polynomial harmonic functions, the sandpile dynamics are characterized by the
 +
smooth transformation and apparent conservation of the patches constituting the sandpile identity. For example, the harmonic dynamics induced by <math>H=xy</math> resemble the "smooth stretching" of the identity along the main diagonals visualized in the animation. The configurations appearing in the dynamics induced by the same harmonic function on square grids of different sizes were furthermore conjectured to weak-* converge, meaning that there supposedly exist scaling limits for them.<ref name="Lang2019" /> This proposes a natural [[renormalization]] for the extended and usual sandpile groups, meaning a mapping of recurrent configurations on a given grid to recurrent configurations on a sub-grid. Informaly, this renormalization simply maps configurations appearing at a given time <math>t</math> in the sandpile dynamics induced by some harmonic function <math>H</math> on the larger grid to the corresponding configurations which appear at the same time in the sandpile dynamics induced by the restriction of <math>H</math> to the respective sub-grid.<ref name="Lang2019" />
 +
由整值调和函数<math>H</math>在时间<math>t\in\mathbb{R}\setminus\mathbb{Z}</math>,沙堆群的同一性<math>I</math>和底函数<math>\lfloor.\rfloor</math>导出的。<ref name="Lang2019" />对于低阶多项式调和函数,沙堆动力学的特征是组成沙堆恒等式的斑块的光滑变换和明显守恒。例如,由<math>H=xy</math> 诱导的谐波动力学类似于动画中可视化的主对角线上恒等式的“平滑拉伸”。进一步推测了由相同的谐函数在不同尺寸的正方形网格上引起的动力学构型的弱收敛,这意味着可能存在标度限制。<ref name="Lang2019" />这为扩展的和普通的沙堆组提出了一个自然的[[重归一化]],这意味着在给定网格上的重复配置映射到子网格上的重复配置。非正式地,重归一化简单地映射了沙堆动力学中给定时间<math>t</math>时的构型,动力学由大型网格上的谐波函数<math>H</math>导出到相应的构型,这种构型在<math>H</math>限制到各自子网格的沙堆动力学中时同时出现。<ref name="Lang2019" />
 +
==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])上面的长句翻译需要重新审校Informaly, this renormalization simply maps
 +
=== The divisible sandpile 可分割的沙堆===
 +
A strongly related model is the so called '''divisible sandpile model''', introduced by Levine and Peres in 2008,<ref>{{Cite journal|last1=Levine|first1=Lionel|last2=Peres|first2=Yuval|date=2008-10-29|title=Strong Spherical Asymptotics for Rotor-Router Aggregation and the Divisible Sandpile|journal=Potential Analysis|language=en|volume=30|issue=1|pages=1–27|doi=10.1007/s11118-008-9104-6|issn=0926-2601|arxiv=0704.0688|s2cid=2227479}}</ref> in which, instead of a discrete number of particles in each site <math>x</math>, there is a real number <math>s(x)</math> representing the amount of mass on the site. In case such mass is negative, one can understand it as a hole. The topple occurs whenever a site has mass larger than 1; it topples the excess evenly between its neighbors resulting in the situation that, if a site is full at time <math>t</math>, it will be full for all later times.
  
 +
Levine和Peres在2008年提出了一个与之密切相关的模型,即所谓的“可分割的沙堆模型”。<ref>{{Cite journal|last1=Levine|first1=Lionel|last2=Peres|first2=Yuval|date=2008-10-29|title=Strong Spherical Asymptotics for Rotor-Router Aggregation and the Divisible Sandpile|journal=Potential Analysis|language=en|volume=30|issue=1|pages=1–27|doi=10.1007/s11118-008-9104-6|issn=0926-2601|arxiv=0704.0688|s2cid=2227479}}</ref>与每个位置<math>x</math>上的沙粒数量为离散数不同,有一个实数<math>s(x)</math>代表位置的总质量。如果这个质量是负的,我们就可以把它理解为一个空洞。当一个位置上的质量大于1时,就会发生崩塌; 它将多余的部分均匀地分发给它的邻居,这就导致了如果一个位置在<math>t</math>的时刻是满的,它在以后的所有时间都是满的。
  
  
Category:Cellular automaton rules
+
== References引用 ==
 +
{{Reflist|30em}}
  
分类: 细胞自动机规则
+
== Further reading ==
 
+
* {{cite book
<noinclude>
+
      | author = Per Bak
 +
| year = 1996
 +
| title = How Nature Works: The Science of Self-Organized Criticality
 +
| publisher = Copernicus
 +
| location = New York
 +
| isbn = 978-0-387-94791-4
 +
}}
 +
* {{cite journal
 +
      |author1=Per Bak |author2=Chao Tang |author3=Kurt Wiesenfeld | year = 1987
 +
| title = Self-organized criticality: an explanation of 1/''&fnof;'' noise
 +
| journal = [[Physical Review Letters]]
 +
| volume = 59
 +
| issue = 4
 +
| pages = 381&ndash;384
 +
| doi = 10.1103/PhysRevLett.59.381
 +
| bibcode=1987PhRvL..59..381B | pmid=10035754}}
 +
* {{cite journal
 +
      |author1=Per Bak |author2=Chao Tang |author3=Kurt Wiesenfeld | year = 1988
 +
| title = Self-organized criticality
 +
| journal = [[Physical Review A]]
 +
| volume = 38
 +
| issue = 1
 +
| pages = 364&ndash;374
 +
| doi = 10.1103/PhysRevA.38.364
 +
|pmid=9900174 | bibcode=1988PhRvA..38..364B
 +
}}
 +
* {{cite journal | last1=Cori | first1=Robert | last2=Rossin | first2=Dominique | last3=Salvy | first3=Bruno | title=Polynomial ideals for sandpiles and their Gröbner bases | zbl=1002.68105 | journal=Theor. Comput. Sci. | volume=276 | issue=1–2 | year=2002 | doi=10.1016/S0304-3975(00)00397-2 | pages=1–15| url=https://hal.archives-ouvertes.fr/hal-00016378/file/sandpile.pdf }}
 +
* {{cite book|first=Caroline|last=Klivans|authorlink=Caroline Klivans|title= The Mathematics of Chip-Firing|title-link= The Mathematics of Chip-Firing|publisher=CRC Press|year=2018}}
 +
* {{cite book | author1-last=Perkinson | author1-first=David | author2-last=Perlman | author2-first=Jacob | author3-last=Wilmes | author3-first=John | chapter=Algebraic geometry of sandpiles | pages=211–256 | editor1-last=Amini | editor1-first=Omid | editor2-last=Baker | editor2-first=Matthew | editor3-last=Faber | editor3-first=Xander | title=Tropical and non-Archimedean geometry. Bellairs workshop in number theory, tropical and non-Archimedean geometry, Bellairs Research Institute, Holetown, Barbados, USA, May 6–13, 2011 | zbl=1281.14002 | series=Contemporary Mathematics | volume=605 | doi=10.1090/conm/605/12117 <!--| subseries=Centre de Recherches Mathématiques Proceedings -->
 +
| location=Providence, RI | publisher=[[American Mathematical Society]] | isbn=978-1-4704-1021-6 | year=2013 | citeseerx=10.1.1.760.283 | s2cid=7851577 }}
  
<small>This page was moved from [[wikipedia:en:Abelian sandpile model]]. Its edit history can be viewed at [[沙堆模型/edithistory]]</small></noinclude>
+
==External links==
 +
*{{cite web|last1=Garcia-Puente|first1=Luis David|title=Sandpiles|url=https://www.youtube.com/watch?v=1MtEUErz7Gg|website=YouTube|publisher=[[Brady Haran]]|accessdate=15 January 2017|format=YouTube video}}
  
[[Category:待整理页面]]
+
[[Category:Self-organization]]
 +
[[Category:Phase transitions]]
 +
[[Category:Dynamical systems]]
 +
[[Category:Critical phenomena]]
 +
[[Category:Nonlinear systems]]
 +
[[Category:Cellular automaton rules]]

2020年11月14日 (六) 04:23的版本

此词条暂由水流心不竞初译,未经审校,带来阅读不便,请见谅。此词条由Zcy初步审校。

The identity element of the sandpile group of a rectangular grid. Yellow pixels correspond to vertices carrying three particles, lilac to two particles, green to one, and black to zero.
沙堆在矩形网格上的标识。黄色像素对应三颗沙粒的顶点,淡紫色代表两颗沙粒,绿色表示一颗沙粒,黑色表示零颗沙粒。

The Abelian sandpile model, also known as the Bak–Tang–Wiesenfeld model, was the first discovered example of a dynamical system displaying self-organized criticality. It was introduced by Per Bak, Chao Tang and Kurt Wiesenfeld in a 1987 paper.[1]

阿贝尔沙堆模型Abelian sandpile model,也被称为 Bak-Tang-Wiesenfeld 模型,是第一个发现的动力系统展示自组织临界性的例子。它是由 Per Bak,Chao Tang 和 Kurt Wiesenfeld 在1987年的一篇论文[1]中提出的。

The model is a cellular automaton. In its original formulation, each site on a finite grid has an associated value that corresponds to the slope of the pile. This slope builds up as "grains of sand" (or "chips") are randomly placed onto the pile, until the slope exceeds a specific threshold value at which time that site collapses transferring sand into the adjacent sites, increasing their slope. Bak, Tang, and Wiesenfeld considered process of successive random placement of sand grains on the grid; each such placement of sand at a particular site may have no effect, or it may cause a cascading reaction that will affect many sites. 这个模型是一种 细胞自动机模型Cellular automaton。在最初的公式中,有限网格上的每个位置都有一个与沙堆的坡度相对应的关联值。当“沙粒”(或“碎片”)被随机放置在沙堆上时,放置位置的斜坡就会堆积起来,直到倾斜程度超过一个特定的阈值,这个位置倒塌,沙子会转移到邻近的位置,增加它们的斜坡。这个斜坡以“沙粒”(或“碎片”)随机放置的方式逐渐形成,直到斜坡超过一个特定的阈值,在这个阈值的时候,这个位置倒塌,将沙子转移到邻近的位置,增加它们的斜坡。Bak,Tang和 Wiesenfeld考虑了在网格上连续随机放置沙粒的过程; 每次这样在特定位置放置沙粒有可能没有产生影响,也有可能会引起级联反应,影响到周围的其他位置。


The model has since been studied on the infinite lattice, on other (non-square) lattices, and on arbitrary graphs (including directed multigraphs).[2] It is closely related to the dollar game, a variant of the chip-firing game introduced by Biggs.[3] 该模型已经在无限栅格、其他(非方形)栅格和任意图(包括有向多重图)上进行了研究。[2]它与美元游戏密切相关,美元游戏是Biggs引入的一种chip-firing游戏的变体。[4]


Definition (rectangular grids)定义(矩形网格)

The sandpile model is a cellular automaton originally defined on a [math]\displaystyle{ N\times M }[/math] rectangular grid (checkerboard) [math]\displaystyle{ \Gamma\subset\mathbb{Z}^2 }[/math] of the standard square lattice [math]\displaystyle{ \mathbb{Z}^2 }[/math].

沙堆模型是一个元胞自动机cellular automaton ,它最初定义在[math]\displaystyle{ N\times M }[/math]矩形网格(棋盘格)上,其顶点在标准的正方形格子[math]\displaystyle{ \mathbb{Z}^2 }[/math][math]\displaystyle{ \Gamma\subset\mathbb{Z}^2 }[/math]

To each vertex (side, field) [math]\displaystyle{ (x,y)\in\Gamma }[/math] of the grid, we associate a value (grains of sand, slope, particles) [math]\displaystyle{ z_0(x,y)\in\{0,1,2,3\} }[/math], with [math]\displaystyle{ z_0\in\{0,1,2,3\}^\Gamma }[/math] referred to as the (initial) configuration of the sandpile.

对于栅格中的每个顶点[math]\displaystyle{ (x,y)\in\Gamma }[/math],我们关联一个值(沙粒、坡度、颗粒) [math]\displaystyle{ z_0(x,y)\in\{0,1,2,3\} }[/math],这样所有顶点的初始状态[math]\displaystyle{ z_0\in\{0,1,2,3\}^\Gamma }[/math]被称为沙堆的(初始)构型。

The dynamics of the automaton at iteration [math]\displaystyle{ i\in\mathbb{N} }[/math] are then defined as follows: 自动机的动力学过程在第[math]\displaystyle{ i\in\mathbb{N} }[/math]次迭代时的定义如下:

  1. Choose a random vertex [math]\displaystyle{ (x_i,y_i)\in\Gamma }[/math] according to some probability distribution (usually uniform).
  2. Add one grain of sand to this vertex while letting the grain numbers for all other vertices unchanged, i.e. set
    [math]\displaystyle{ z_i(x_i,y_i)=z_{i-1}(x_i,y_i)+1 }[/math] and
    [math]\displaystyle{ z_i(x,y)=z_{i-1}(x,y) }[/math] for all [math]\displaystyle{ (x,y)\neq(x_i,y_i) }[/math].
  3. If all vertices are stable, i.e. [math]\displaystyle{ z_i(x,y)\lt 4 }[/math] for all [math]\displaystyle{ (x,y)\in\Gamma }[/math], also the configuration [math]\displaystyle{ z_i }[/math] is said to be stable. In this case, continue with the next iteration.
  4. If at least one vertex is unstable, i.e. [math]\displaystyle{ z_i(x_u,y_u)\geq 4 }[/math] for some [math]\displaystyle{ (x_u,y_u)\in\Gamma }[/math], the whole configuration [math]\displaystyle{ z_i }[/math] is said to be unstable. In this case, choose any unstable vertex [math]\displaystyle{ (x_u,y_u)\in\Gamma }[/math] at random. Topple this vertex by reducing its grain number by four and by increasing the grain numbers of each of its (at maximum four) direct neighbors by one, i.e. set
    [math]\displaystyle{ z_i(x_u,y_u) \rightarrow z_i(x_u,y_u) - 4, }[/math], and
    [math]\displaystyle{ z_i( x_u \pm 1, y_u \pm 1) \rightarrow z_i( x_u \pm 1, y_u\pm 1) + 1 }[/math] if [math]\displaystyle{ ( x_u \pm 1, y_u\pm 1)\in\Gamma }[/math].
    If a vertex at the boundary of the domain topples, this results in a net loss of grains (two grains at the corner of the grid, one grain otherwise).
  5. Due to the redistribution of grains, the toppling of one vertex can render other vertices unstable. Thus, repeat the toppling procedure until all vertices of [math]\displaystyle{ z_i }[/math] eventually become stable and continue with the next iteration.
  1. 根据某种概率分布(通常为均匀分布)随机选择一个顶点。根据一些概率分布(通常是均匀的)选择一个随机顶点[math]\displaystyle{ (x_i,y_i)\in\Gamma }[/math]
  2. 向这个顶点添加一粒沙子,同时让其他顶点的沙粒数保持不变,也就是设定[math]\displaystyle{ \lt br /\gt z_i(x_i,y_i)=z_{i-1}(x_i,y_i)+1 }[/math],对于所有的[math]\displaystyle{ (x,y)\neq(x_i,y_i) }[/math][math]\displaystyle{ \lt br /\gt z_i(x,y)=z_{i-1}(x,y) }[/math]
  3. 如果所有的顶点都是稳定的,即如果[math]\displaystyle{ (x,y)\in\Gamma }[/math][math]\displaystyle{ z_i(x,y)\lt 4 }[/math],那么[math]\displaystyle{ z_i }[/math]被认为是稳定的。在这种情况下,继续下一轮迭代。
  4. 如果至少有一个顶点是不稳定的,即对于一些[math]\displaystyle{ (x_u,y_u)\in\Gamma }[/math][math]\displaystyle{ z_i(x_u,y_u)\geq 4 }[/math][math]\displaystyle{ z_i }[/math]被认为是不稳定的。在这种情况下,随机选择任意不稳定顶点[math]\displaystyle{ (x_u,y_u)\in\Gamma }[/math]。将该顶点的沙粒数减少4个,清空这个顶点,并将其每个(最多4个)直接邻居的沙粒数增加1个。即:[math]\displaystyle{ \lt br /\gt z_i(x_u,y_u) \rightarrow z_i(x_u,y_u) – 4 }[/math][math]\displaystyle{ \lt br /\gt z_i( x_u \pm 1, y_u \pm 1) \rightarrow z_i( x_u \pm 1, y_u\pm 1) + 1 if ( x_u \pm 1, y_u\pm 1)\in\Gamma.\lt br /\gt }[/math]。如果一个在边界的顶点产生崩塌,这将导致沙粒的净损失(两粒在网格的角落,一粒在其他地方)。
  5. 由于沙粒的重新分布,一个顶点的崩塌会使其他顶点不稳定。这样,重复崩塌的过程,直到[math]\displaystyle{ z_i }[/math]状态下的所有顶点最终稳定下来,继续下一轮迭代。


The toppling of several vertices during one iteration is referred to as an avalanche. Every avalanche is guaranteed to eventually stop, i.e. after a finite number of topplings some stable configuration is reached such that the automaton is well defined. Moreover, although there will often be many possible choices for the order in which to topple vertices, the final stable configuration does not depend on the chosen order; this is one sense in which the sandpile is abelian. Similarly, the number of times each vertex topples during each iteration is also independent of the choice of toppling order.

在一次迭代中多个顶点的崩塌被称为雪崩。每一次雪崩最终都会停止,也就是说,经过有限数量的顶点崩塌,会达到某种稳定的配置,这样自动机就得到了很好的定义。此外,尽管顶点崩塌的顺序常常有许多可能的选择,但最终的稳定状态并不依赖于所选择的顺序; 这是沙堆模型具有的可交换性质。类似地,在每次迭代过程中,每个顶点的崩塌次数也与崩塌顺序的选择是无关。

Definition (undirected finite multigraphs)定义(无向有限多图)

To generalize the sandpile model from the rectangular grid of the standard square lattice to an arbitrary undirected finite multigraph [math]\displaystyle{ G=(V,E) }[/math], a special vertex [math]\displaystyle{ s\in V }[/math] called the sink is specified that is not allowed to topple. A configuration (state) of the model is then a function [math]\displaystyle{ z:V\setminus\{s\}\rightarrow\mathbb{N}_0 }[/math] counting the non-negative number of grains on each non-sink vertex. A non-sink vertex [math]\displaystyle{ v\in V\setminus\{s\} }[/math] with

[math]\displaystyle{ z(v)\geq \deg(v) }[/math]

is unstable; it can be toppled, which sends one of its grains to each of its (non-sink) neighbors:

[math]\displaystyle{ z(v) \to z(v) - \deg(v) }[/math]
[math]\displaystyle{ z(u) \to z(u) + 1 }[/math] for all [math]\displaystyle{ u\sim v }[/math], [math]\displaystyle{ u\neq s }[/math].

为了将 沙堆模型从标准方格的矩形网格推广到任意无向有限多重图 [math]\displaystyle{ G=(V,E) }[/math] ,在 [math]\displaystyle{ V }[/math] 中指定了一个不允许崩塌的特殊沉没顶点[math]\displaystyle{ s }[/math]。模型的配置(状态)服从函数[math]\displaystyle{ z:V\setminus\{s\}\rightarrow\mathbb{N}_0 }[/math],计算每个非沉没顶点上的非负沙粒数。非沉没顶点[math]\displaystyle{ v\in V\setminus\{s\} }[/math]当满足[math]\displaystyle{ z(v)\geq \deg(v) }[/math]时是不稳定的,它会产生崩塌,将给它的每个(非沉没)邻居分发一颗沙粒:

[math]\displaystyle{ z(v) \to z(v) - \deg(v) }[/math]
[math]\displaystyle{ z(u) \to z(u) + 1 }[/math]对于所有的[math]\displaystyle{ u\sim v }[/math], [math]\displaystyle{ u\neq s }[/math].

The cellular automaton then progresses as before, i.e. by adding, in each iteration, one particle to a randomly chosen non-sink vertex and toppling until all vertices are stable. 元胞自动机像之前一样进行,即在每次迭代中,向随机选择的非沉没顶点添加一个沙粒,不断进行崩塌过程,直到所有顶点都稳定。

The definition of the sandpile model given above for finite rectangular grids [math]\displaystyle{ \Gamma\subset\mathbb{Z}^2 }[/math] of the standard square lattice [math]\displaystyle{ \mathbb{Z}^2 }[/math] can then be seen as a special case of this definition: consider the graph [math]\displaystyle{ G=(V,E) }[/math] which is obtained from [math]\displaystyle{ \Gamma }[/math] by adding an additional vertex, the sink, and by drawing additional edges from the sink to every boundary vertex of [math]\displaystyle{ \Gamma }[/math] such that the degree of every non-sink vertex of [math]\displaystyle{ G }[/math] is four. In this manner, also sandpile models on non-rectangular grids of the standard square lattice (or of any other lattice) can be defined: Intersect some bounded subset [math]\displaystyle{ S }[/math] of [math]\displaystyle{ \mathbb{R}^2 }[/math] with [math]\displaystyle{ \mathbb{Z}^2 }[/math]. Contract every edge of [math]\displaystyle{ \mathbb{Z}^2 }[/math] whose two endpoints are not in [math]\displaystyle{ S\cap\mathbb{Z}^2 }[/math]. The single remaining vertex outside of [math]\displaystyle{ S\cap\mathbb{Z}^2 }[/math] then constitutes the sink of the resulting sandpile graph. 上面给出的沙堆模型的定义,是在标准正方形网格\mathbb{Z}^2上的有限矩形网格\Gamma\subset\mathbb{Z}^2,它可以看作是下面定义的一个特例:考虑图G=(V,E),从\Gamma添加一个沉没顶点,并添加从沉没顶点到每个边界顶点的边,使得G的每个非沉没顶点的度数为4。以这种方式,也可以定义标准正方形网格(或任何其他类型网格)的非矩形格上的沙堆模型: 将\mathbb{R}^2的一些有界子集S与\mathbb{Z}^2相交。收缩\mathbb{Z}^2的每条边,其两个端点不在S\cap\mathbb{Z}^2中。S\cap\mathbb{Z}^2之外的一个单独剩余顶点构成了最终沙堆图的沉没顶点。

Transient and recurrent configurations瞬态和循环构型

In the dynamics of the sandpile automaton defined above, some stable configurations ([math]\displaystyle{ 0\leq z(v)\lt 4 }[/math] for all [math]\displaystyle{ v\in G\setminus\{s\} }[/math]) appear infinitely often, while others can only appear a finite number of times (if at all). The former are referred to as recurrent configurations, while the latter are referred to as transient configurations. The recurrent configurations thereby consist of all stable non-negative configurations which can be reached from any other stable configuration by repeatedly adding grains of sand to vertices and toppling. It is easy to see that the minimally stable configuration [math]\displaystyle{ z_m }[/math], where every vertex carries [math]\displaystyle{ z_m(v)=deg(v)-1 }[/math] grains of sand, is reachable from any other stable configuration (add [math]\displaystyle{ deg(v)-z(v)-1\geq 0 }[/math] grains to every vertex). Thus, equivalently, the recurrent configurations are exactly those configurations which can be reached from the minimally stable configuration by only adding grains of sand and stabilizing. 在上面定义的沙堆自动机的动力学过程中,一些稳定状态的构型(对于所有[math]\displaystyle{ v\In G\setminus\{s\} }[/math][math]\displaystyle{ 0\leq z(v)\lt 4 }[/math])经常无限次出现,而另一些则只能出现有限次(如果真的发生的话)。前者被称为“循环构型”,而后者被称为“瞬态构型”。因此,周期性构形由所有稳定的非负构形组成,这些构形可以从任何其他稳定构形中,通过反复向顶点添加沙粒,产生崩塌而得到。很容易看出,“最小稳定配置”[math]\displaystyle{ zum }[/math],其中每个顶点放置[math]\displaystyle{ zum(v)=deg(v)-1 }[/math]颗沙粒,可从任何其他稳定构型得到(通过向每个顶点添加[math]\displaystyle{ deg(v)-z(v)-1\geq 0 }[/math]颗沙粒)。因此,也就是说,周期性构型可以从最小稳定构型开始,通过添加沙粒,再稳定化得到。

Not every non-negative stable configuration is recurrent. For example, in every sandpile model on a graph consisting of at least two connected non-sink vertices, every stable configuration where both vertices carry zero grains of sand is non-recurrent. To prove this, first note that the addition of grains of sand can only increase the total number of grains carried by the two vertices together. To reach a configuration where both vertices carry zero particles from a configuration where this is not the case thus necessarily involves steps where at least one of the two vertices is toppled. Consider the last one of these steps. In this step, one of the two vertices has to topple last. Since toppling transfers a grain of sand to every neighboring vertex, this implies that the total number of grains carried by both vertices together cannot be lower than one, which concludes the proof. 并非所有非负稳定构型都是循环的。例如,在一个至少包含由两个连通的非沉没顶点的图结构的沙堆模型中,如果这两个顶点没有放置沙粒,那么这个稳定结构是非循环的。为了证明这一点,首先要注意的是,沙粒的增加只能增加两个顶点放置的沙粒的总数。为了达到两个顶点都不放置沙粒的构型,从一个不是这种情况的构型出发,必然涉及到两个顶点中至少有一个崩塌的步骤。考虑这些步骤中的最后一个,在这个步骤中,两个顶点中的一个必须最后崩塌。由于崩塌会将对每个相邻的顶点转移一颗沙粒,这意味着两个顶点共同放置的沙粒总数不能低于一颗,因而得证。

Sandpile group沙堆群

Given a configuration [math]\displaystyle{ z }[/math], [math]\displaystyle{ z(v)\in\mathbb{N}_0 }[/math] for all [math]\displaystyle{ v\in G\setminus\{s\} }[/math], toppling unstable non-sink vertices on a finite connected graph until no unstable non-sink vertex remains leads to a unique stable configuration [math]\displaystyle{ z^\circ }[/math], which is called the stabilization of [math]\displaystyle{ z }[/math]. Given two stable configurations [math]\displaystyle{ z }[/math] and [math]\displaystyle{ w }[/math], we can define the operation [math]\displaystyle{ z*w \to (z+w)^\circ }[/math], corresponding to the vertex-wise addition of grains followed by the stabilization of the resulting sandpile. 给定一个构型[math]\displaystyle{ z }[/math][math]\displaystyle{ z(v)\in\mathbb{N}_0 }[/math]对于所有[math]\displaystyle{ v\in G\setminus\{s\} }[/math],在有限连通图上使不稳定的非沉没顶点崩塌,直到没有不稳定的非汇顶点保留,这将导致唯一的“稳定”配置math>z^\circ</math>,这就是[math]\displaystyle{ z }[/math]的“稳定化”。给定两个稳定构型[math]\displaystyle{ z }[/math][math]\displaystyle{ w }[/math],我们可以定义运算[math]\displaystyle{ z*w \to (z+w)^\circ }[/math],对应于沙粒的顶点方向相加,然后稳定得到的沙堆。

==Zcy讨论)corresponding to the vertex-wise addition of grains翻译存疑

Given an arbitrary but fixed ordering of the non-sink vertices, multiple toppling operations, which can e.g. occur during the stabilization of an unstable configuration, can be efficiently encoded by using the graph Laplacian [math]\displaystyle{ \Delta=D-A }[/math], where [math]\displaystyle{ D }[/math] is the degree matrix and [math]\displaystyle{ A }[/math] is the adjacency matrix of the graph.

给定一个任意但固定的非沉没顶点的顺序,进行多个崩塌操作,可以通过使用图拉普拉斯[math]\displaystyle{ \Delta=D-A }[/math]高效地编码多个崩塌操作(例如,在不稳定构型的稳定过程中可能发生),其中[math]\displaystyle{ D }[/math]是图的度矩阵[math]\displaystyle{ A }[/math]是图的邻接矩阵


Deleting the row and column of [math]\displaystyle{ \Delta }[/math] corresponding with the sink yields the reduced graph Laplacian [math]\displaystyle{ \Delta' }[/math]. Then, when starting with a configuration [math]\displaystyle{ z }[/math] and toppling each vertex [math]\displaystyle{ v }[/math] a total of [math]\displaystyle{ \mathbf{x}(v)\in\mathbb{N}_0 }[/math] times yields the configuration [math]\displaystyle{ z-\Delta'\boldsymbol{\cdot}~\mathbf{x} }[/math], where [math]\displaystyle{ \boldsymbol{\cdot} }[/math] is the contraction product. Furthermore, if [math]\displaystyle{ \mathbf{x} }[/math] corresponds to the number of times each vertex is toppled during the stabilization of a given configuration [math]\displaystyle{ z }[/math], then

[math]\displaystyle{ z^\circ=z-\Delta'\boldsymbol{\cdot}~\mathbf{x} }[/math]

删除与沉没顶点相对应的 [math]\displaystyle{ \Delta }[/math]的行和列,得到简化图拉普拉斯矩阵 [math]\displaystyle{ \Delta' }[/math]。然后,当以一个构型[math]\displaystyle{ z }[/math] 开始,并将每个顶点[math]\displaystyle{ v }[/math]进行总共[math]\displaystyle{ \mathbf{x}(v)\in\mathbb{N}_0 }[/math]次的崩塌操作时,产生[math]\displaystyle{ z-\Delta'\boldsymbol{\cdot}~\mathbf{x} }[/math]构型,其中[math]\displaystyle{ \boldsymbol{\cdot} }[/math]是收缩积。此外,如果 [math]\displaystyle{ \mathbf{x} }[/math] 对应于在给定构型[math]\displaystyle{ z }[/math]的稳定过程中每个顶点产生崩塌的次数,则

[math]\displaystyle{ z^\circ=z-\Delta'\boldsymbol{\cdot}~\mathbf{x} }[/math]


In this case, [math]\displaystyle{ \mathbf{x} }[/math] is referred to as the toppling or odometer function (of the stabilization of [math]\displaystyle{ z }[/math]). 在这种情况下,[math]\displaystyle{ \mathbf{x} }[/math]被称为崩塌或[math]\displaystyle{ z }[/math]的稳定过程的里程计函数。 ==Zcy讨论)odometer function翻译存疑

Under the operation [math]\displaystyle{ * }[/math], the set of recurrent configurations forms an abelian group isomorphic to the cokernel of the reduced graph Laplacian [math]\displaystyle{ \Delta' }[/math], i.e. to [math]\displaystyle{ \mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta' }[/math], whereby [math]\displaystyle{ n }[/math] denotes the number of vertices (including the sink). More generally, the set of stable configurations (transient and recurrent) forms a commutative monoid under the operation [math]\displaystyle{ * }[/math]. The minimal ideal of this monoid is then isomorphic to the group of recurrent configurations. 在[math]\displaystyle{ * }[/math]运算下,递归构形的集合构成一个与约化图拉普拉斯矩阵[math]\displaystyle{ \Delta' }[/math]的核同构的阿贝尔群。对于 [math]\displaystyle{ \mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta' }[/math],其中[math]\displaystyle{ n }[/math] 表示顶点数(包括沉没顶点)。更一般地说,稳定构型集(瞬态和循环)在[math]\displaystyle{ * }[/math].运算下形成 交换幺半群Commutative monoid。这个幺半群的最小理想同构于循环构型群。 ==Zcy讨论)ideal翻译存疑

The group formed by the recurrent configurations, as well as the group [math]\displaystyle{ \mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta' }[/math] to which the former is isomorphic, is most commonly referred to as the sandpile group. Other common names for the same group are critical group, Jacobian group or (less often) Picard group. Note, however, that some authors only denote the group formed by the recurrent configurations as the sandpile group, while reserving the name Jacobian group or critical group for the (isomorphic) group defined by [math]\displaystyle{ \mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta' }[/math] (or for related isomorphic definitions). Finally, some authors use the name Picard group to refer to the direct product of the sandpile group and [math]\displaystyle{ \mathbb{Z} }[/math], which naturally appears in a cellular automaton closely related to the sandpile model, referred to as the chip firing or dollar game.

由循环构形形成的群,以及与之同构的群[math]\displaystyle{ \mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta' }[/math],通常称为 沙堆群Sandpile group。相同群的其它常用名称是“临界群”、“Jacobian群”或(不常见的)“Picard群”。然而,要注意的是,有些作者只把循环构型形成的组称为沙堆组,而为由[math]\displaystyle{ \mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta' }[/math](或相关的同构定义)定义的同构群保留Jacobian群或临界群的称呼。最后,一些作者使用Picard群来指代沙堆群和[math]\displaystyle{ \mathbb{Z} }[/math]的直接产物,后者出现在与沙堆模型密切相关的元胞自动机中,被称为 碎片点火或美元游戏Chip firing or Dollar game


Given the isomorphisms stated above, the order of the sandpile group is the determinant of [math]\displaystyle{ \Delta' }[/math], which by the matrix tree theorem is the number of spanning trees of the graph.

给定上述同构,沙堆群的顺序是[math]\displaystyle{ \Delta' }[/math]的行列式,根据矩阵树定理,它是图的生成树数目。


Self-organized criticality自组织临界性

The original interest behind the model stemmed from the fact that in simulations on lattices, it is attracted to its critical state, at which point the correlation length of the system and the correlation time of the system go to infinity, without any fine tuning of a system parameter. This contrasts with earlier examples of critical phenomena, such as the phase transitions between solid and liquid, or liquid and gas, where the critical point can only be reached by precise tuning (e.g., of temperature). Hence, in the sandpile model we can say that the criticality is self-organized. 模型最初源于这样一个事实,即在晶格上的模拟中,它被吸引到了它的临界状态,此时系统的关联长度和关联时间趋于无穷大,不需要对系统参数进行任何微调。这与早期临界现象的例子形成了对比,例如固体和液体之间,或液体和气体之间的相变,其中临界点只能通过精确调节(例如,温度)来达到。因此,在沙堆模型中,我们可以说临界性是自组织的。

Once the sandpile model reaches its critical state there is no correlation between the system's response to a perturbation and the details of a perturbation. Generally this means that dropping another grain of sand onto the pile may cause nothing to happen, or it may cause the entire pile to collapse in a massive slide. The model also displays 1/ƒ noise, a feature common to many complex systems in nature. 一旦沙堆模型达到其临界状态,系统对扰动的响应和扰动细节之间就没有关联。一般来说,这意味着再往沙堆形成的斜坡上撒一粒沙子可能不会导致任何事情发生,或者可能导致整个沙堆形成的斜坡在大规模滑坡中崩塌。该模型还显示了1/ƒ noise,这是自然界中许多复杂系统的共同特征。

This model only displays critical behaviour in two or more dimensions. The sandpile model can be expressed in 1D; however, instead of evolving to its critical state, the 1D sandpile model instead reaches a minimally stable state where every lattice site goes toward the critical slope. 此模型仅在两个或多个维度中显示关键行为。沙堆模型可以用一维来表示; 然而,一维沙堆模型不是演化到临界状态,而是达到最小稳定状态,其中每个格点都趋向临界坡度。

For two dimensions, it has been hypothesized that the associated conformal field theory is consists of symplectic fermions with a central charge c = −2.[5] 对于二维,相关共形场理论被认为是中心电荷为c = −2的symplectic fermion辛费米子组成的;[6]

Properties属性

Least action principle最小作用原理

The stabilization of chip configurations obeys a form of least action principle: each vertex topples no more than necessary in the course of the stabilization.[7]

芯片结构的稳定遵循一种“最小作用原理”的形式:每个顶点在稳定过程中不超过必要的崩塌量。

This can be formalized as follows. Call a sequence of topples legal if it only topples unstable vertices, and stabilizing if it results in a stable configuration. The standard way of stabilizing the sandpile is to find a maximal legal sequence; i.e., by toppling so long as it is possible. Such a sequence is obviously stabilizing, and the Abelian property of the sandpile is that all such sequences are equivalent up to permutation of the toppling order; that is, for any vertex [math]\displaystyle{ v }[/math], the number of times [math]\displaystyle{ v }[/math] topples is the same in all legal stabilizing sequences. According to the least action principle, a minimal stabilizing sequence is also equivalent up to permutation of the toppling order to a legal (and still stabilizing) sequence. In particular, the configuration resulting from a minimal stabilizing sequence is the same as results from a maximal legal sequence. 这可以形式化如下。如果一个崩塌序列只推倒不稳定的顶点,则称其为“合法的”,使用一组合法的顶点序列,如果它的结果是一个稳定的构型,则称其为“稳定的”。稳定沙堆的标准方法是找到一个最大的合法崩塌序列,也就是说,让崩塌序列尽可能地长。这种序列具有明显的稳定性,沙堆的可交换性质是所有这些序列都等价于倾斜序列的置换,也就是说,对于任何顶点[math]\displaystyle{ v }[/math],在所有合法的稳定序列中[math]\displaystyle{ v }[/math]的崩塌次数都是相同的。根据最小作用原理,最小稳定序列等价于合法的(且稳定的)崩塌序列的置换。特别地,由最小稳定序列产生的构型与由最大合法序列产生的构型是相同的。


More formally, if [math]\displaystyle{ \mathbf{u} }[/math] is a vector such that [math]\displaystyle{ \mathbf{u}(v) }[/math] is the number of times the vertex [math]\displaystyle{ v }[/math] topples during the stabilization (via the toppling of unstable vertices) of a chip configuration [math]\displaystyle{ z }[/math], and [math]\displaystyle{ \mathbf{n} }[/math] is an integral vector (not necessarily non-negative) such that [math]\displaystyle{ z-\mathbf{n}\Delta' }[/math] is stable, then [math]\displaystyle{ \mathbf{u}(v) \leq \mathbf{n}(v) }[/math] for all vertices [math]\displaystyle{ v }[/math]. 更正式地说,如果[math]\displaystyle{ \mathbf{u} }[/math]是一个向量, [math]\displaystyle{ \mathbf{u}(v) }[/math]是碎片构型[math]\displaystyle{ z }[/math]在稳定过程中(通过不稳定顶点的崩塌)顶点[math]\displaystyle{ v }[/math]崩塌的次数,并且[math]\displaystyle{ \mathbf{n} }[/math]是一个积分向量(不一定是非负的),使得[math]\displaystyle{ z-\mathbf{n}\Delta' }[/math]是稳定的,那么对于所有顶点[math]\displaystyle{ v }[/math][math]\displaystyle{ \mathbf{u}(v) \leq \mathbf{n}(v) }[/math]。 ==Zcy讨论[math]\displaystyle{ \mathbf{n} }[/math] is an integral vector (not necessarily non-negative)这一句话的翻译存疑。

Scaling limits缩放限制

Animation of the sandpile identity on square grids of increasing size. Black color denotes vertices with 0 grains, green is for 1, purple is for 2, and gold is for 3.
沙堆标识在方形网格不断增加的动画。 黑色表示沙粒数为0的顶点,绿色表示沙粒数为1,紫色表示沙粒数为2,金色表示沙粒数为3。

The animation shows the recurrent configuration corresponding to the identity of the sandpile group on different [math]\displaystyle{ N\times N }[/math] square grids of increasing sizes [math]\displaystyle{ N\geq 1 }[/math], whereby the configurations are rescaled to always have the same physical dimension. Visually, the identities on larger grids seem to become more and more detailed and to "converge to a continuous image". Mathematically, this suggests the existence of scaling-limits of the sandpile identity on square grids based on the notion of weak-* convergence (or some other, generalized notion of convergence). Indeed, existence of scaling limits of recurrent sandpile configurations has been proved by Wesley Pegden and Charles Smart [8] .[9] In further joint work with Lionel Levine, they use the scaling limit to explain the fractal structure of the sandpile on square grids.[10] 动画显示了对应网格尺寸[math]\displaystyle{ N\geq 1 }[/math]不断增大,不同大小的[math]\displaystyle{ N\times N }[/math]正方形网格上的沙堆群标识的重复配置,从而重新缩放配置以始终具有相同的物理维度。从视觉上看,更大网格上的标识似乎变得越来越详细,并且“收敛到一个连续的图像”。从数学上讲,这表明基于弱收敛的概念(或其他一些广义的收敛概念),正方形网格上沙堆恒等式存在标度极限。事实上,Wesley-Pegden和Charles-Smart已经证明了循环沙堆结构标度极限的存在性。[8] .[9] In further joint work with Lionel Levine, they use the scaling limit to explain the fractal structure of the sandpile on square grids.[10]



Generalizations and related models归纳与相关模型

Sandpile models on infinite grids有向图上的沙堆模型

文件:Sandpile on infinite grid, 3e7 grains.png
30 million grains dropped to a site of the infinite square grid, then toppled according to the rules of the sandpile model. White color denotes sites with 0 grains, green is for 1, purple is for 2, gold is for 3. The bounding box is 3967×3967.
文件:Sandpile on infinite grid, 3e7 grains.png
3000万粒沙粒落在无限方形网格的一个位置上,然后按照沙堆模型的规则产生崩塌。白色表示0颗沙粒位置,绿色表示1颗,紫色表示2颗,金色表示3颗。图中框的大小是3967×3967。

There exist several generalizations of the sandpile model to infinite grids. A challenge in such generalizations is that, in general, it is not guaranteed anymore that every avalanche will eventually stop. Several of the generalization thus only consider the stabilization of configurations for which this can be guaranteed.

沙堆模型可以推广到无限网格中。这种归纳法的一个挑战是,一般来说,不再保证每次雪崩最终都会停止。因此,一些一般化方法只考虑了构型的稳定性,因为这一点是能保证的。

A rather popular model on the (infinite) square lattice with sites [math]\displaystyle{ (x,y)\in\mathbb{Z}^2 }[/math] is defined as follows: 在(无限)方格上有一个相当流行的模型,其位置[math]\displaystyle{ (x,y)\in\mathbb{Z}^2 }[/math]定义如下:

Begin with some nonnegative configuration of values [math]\displaystyle{ z(x,y)\in \mathbf{Z} }[/math] which is finite, meaning 从\mathbf{z}</math>中有限值[math]\displaystyle{ z(x,y)\in \mathbf{Z} }[/math]的一些非负配置开始,这意味着

[math]\displaystyle{ \sum_{x,y}z(x,y)\lt \infty. }[/math]

Any site [math]\displaystyle{ (x,y) }[/math] with 任何位置[math]\displaystyle{ (x,y) }[/math]

[math]\displaystyle{ z(x,y)\geq 4 }[/math]

is unstable and can topple (or fire), sending one of its chips to each of its four neighbors: 就是“不稳定的”,并且会产生崩塌,将它位置上的沙粒分发给它的四个邻居:

[math]\displaystyle{ z(x,y) \rightarrow z(x,y) - 4, }[/math]
[math]\displaystyle{ z( x \pm 1, y) \rightarrow z( x \pm 1, y) + 1, }[/math]
[math]\displaystyle{ z(x, y \pm 1) \rightarrow z( x, y \pm 1 ) + 1. }[/math]

Since the initial configuration is finite, the process is guaranteed to terminate, with the grains scattering outward. 由于初始构型是有限的,这一过程必然会随着沙粒向外散布终止。

A popular special case of this model is given when the initial configuration is zero for all vertices except the origin. If the origin carries a huge number of grains of sand, the configuration after relaxation forms fractal patterns (see figure). When letting the initial number of grains at the origin go to infinity, the rescaled stabilized configurations were shown to converge to a unique limit.[9][10] 给出了该模型的一个常见特例,即除原点外的所有顶点的初始配置都为零。如果原点放置大量沙粒,松弛后的构型形成分形图案(见图)。当初始颗粒数趋于无穷时,重缩放的稳定构型收敛到唯一极限。[9][10]

Sandpile models on directed graphs有向图上的沙堆模型

The sandpile model can be generalized to arbitrary directed multigraphs. The rules are that any vertex [math]\displaystyle{ v }[/math] with 沙堆模型可以推广到任意有向多重图。规则是任何顶点[math]\displaystyle{ v }[/math]

[math]\displaystyle{ z(v)\geq \deg^{+}(v) }[/math]

is unstable; toppling again sends chips to each of its neighbors, one along each outgoing edge: 则是不稳定的;崩塌将它的碎片沿着边的输出方向,分发给它的邻居:

[math]\displaystyle{ z(v) \rightarrow z(v) - \deg^{+}(v) + \deg(v,v) }[/math]

and, for each [math]\displaystyle{ u\neq v }[/math]: 并且,对于每个[math]\displaystyle{ u\neq v }[/math]

[math]\displaystyle{ z(u) \rightarrow z(u) + \deg(v,u) }[/math]

where [math]\displaystyle{ \deg(v,u) }[/math] is the number of edges from [math]\displaystyle{ v }[/math] to [math]\displaystyle{ u }[/math]. 其中,[math]\displaystyle{ \deg(v,u) }[/math]是从[math]\displaystyle{ v }[/math][math]\displaystyle{ u }[/math]的边数。

In this case the Laplacian matrix is not symmetric. If we specify a sink [math]\displaystyle{ s }[/math] such that there is a path from every other vertex to [math]\displaystyle{ s }[/math], then the stabilization operation on finite graphs is well-defined and the sandpile group can be written 在这种情况下,拉普拉斯矩阵是不对称的。如果我们指定一个沉没顶点[math]\displaystyle{ s }[/math],使得每一个顶点都有一条到[math]\displaystyle{ s }[/math]的路径,那么有限图上的稳定操作是定义良好的,并且沙堆群可以像之前一样被写出来

[math]\displaystyle{ \mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta' }[/math]

as before.

The order of the sandpile group is again the determinant of [math]\displaystyle{ \Delta' }[/math], which by the general version of the matrix tree theorem is the number of oriented spanning trees rooted at the sink. 沙堆群的顺序又是[math]\displaystyle{ \Delta' }[/math]的行列式,根据矩阵树定理的一般版本,它是根在沉没顶点的有向spanning tree生成树的数目。 ==Zcy讨论)The order of the sandpile group翻译存疑。

The extended sandpile model扩展沙堆模型

Sandpile dynamics induced by the harmonic function H=x*y on a 255x255 square grid.
由谐波函数H=x*y在255x255方格网格上引起的沙堆动力学。

To better understand the structure of the sandpile group for different finite convex grids [math]\displaystyle{ \Gamma\subset\mathbb{Z}^2 }[/math] of the standard square lattice [math]\displaystyle{ \mathbb{Z}^2 }[/math], Lang and Shkolnikov introduced the extended sandpile model in 2019.[11] The extended sandpile model is defined nearly exactly the same as the usual sandpile model (i.e. the original Bak–Tang–Wiesenfeld model [1]), except that vertices at the boundary [math]\displaystyle{ \partial\Gamma }[/math] of the grid are now allowed to carry a non-negative real number of grains. In contrast, vertices in the interior of the grid are still only allowed to carry integer numbers of grains. The toppling rules remain unchanged, i.e. both interior and boundary vertices are assumed to become unstable and topple if the grain number reaches or exceeds four.

为了更好地理解不同有限凸网格[math]\displaystyle{ \Gamma\subset\mathbb{Z}^2 }[/math]的沙堆群的结构,Lang和Shkolnikov在2019年提出了“扩展沙堆模型”。[11]扩展沙堆模型的定义与“通常的沙堆模型”几乎完全相同(即原始的Bak–Tang–Wiesenfeld模型[1]),除了网格边界[math]\displaystyle{ \partial\Gamma }[/math]的顶点现在允许放置非负实数的沙粒。相比之下,网格内部的顶点仍然只允许放置整数个粒子。崩塌规则保持不变,即假设当沙粒数达到或超过4时,内部顶点和边界顶点都变得不稳定并发生崩塌。


Also the recurrent configurations of the extended sandpile model form an abelian group, referred to as the extended sandpile group, of which the usual sandpile group is a discrete subgroup. Different to the usual sandpile group, the extended sandpile group is however a continuous Lie group. Since it is generated by only adding grains of sand to the boundary [math]\displaystyle{ \partial\Gamma }[/math] of the grid, the extended sandpile group furthermore has the topology of a torus of dimension [math]\displaystyle{ |\partial\Gamma| }[/math] and a volume given by the order of the usual sandpile group.[11] 扩展沙堆模型的递归构型也形成了一个阿贝尔群,称为“扩展沙堆群”,通常的扩展沙堆群是一个离散子群。与通常的沙堆群不同,扩展沙堆群是一个连续的李群。只因为它是由添加沙粒到网格的边界[math]\displaystyle{ \partial\Gamma }[/math]上形成的,扩展后的沙堆群还具有维度[math]\displaystyle{ |\partial\Gamma| }[/math]的环面拓扑结构,并且按通常沙堆组的顺序给出的体积。[11] ==Zcy讨论)a volume given by the order of the usual sandpile group.翻译存疑。

Of specific interest is the question how the recurrent configurations dynamically change along the continuous geodesics of this torus passing through the identity. This question leads to the definition of the sandpile dynamics 特别感兴趣的问题是循环构型如何通过恒等式,沿着这个环面的连续测地线动态变化的问题。这个问题引出了沙堆动力学的定义 ==Zcy讨论)identity在整篇文章中的翻译需进行统一,如何翻译??同一性,恒等式??

[math]\displaystyle{ D_H(t)=(I-t\Delta H)^\circ }[/math] (扩展沙堆模型)

respectively

[math]\displaystyle{ \tilde{D}_H(t)=(I+\lfloor-t\Delta H\rfloor)^\circ }[/math] (普通沙堆模型)

induced by the integer-valued harmonic function [math]\displaystyle{ H }[/math] at time [math]\displaystyle{ t\in\mathbb{R}\setminus\mathbb{Z} }[/math], with [math]\displaystyle{ I }[/math] the identity of the sandpile group and [math]\displaystyle{ \lfloor.\rfloor }[/math] the floor function.[11] For low-order polynomial harmonic functions, the sandpile dynamics are characterized by the smooth transformation and apparent conservation of the patches constituting the sandpile identity. For example, the harmonic dynamics induced by [math]\displaystyle{ H=xy }[/math] resemble the "smooth stretching" of the identity along the main diagonals visualized in the animation. The configurations appearing in the dynamics induced by the same harmonic function on square grids of different sizes were furthermore conjectured to weak-* converge, meaning that there supposedly exist scaling limits for them.[11] This proposes a natural renormalization for the extended and usual sandpile groups, meaning a mapping of recurrent configurations on a given grid to recurrent configurations on a sub-grid. Informaly, this renormalization simply maps configurations appearing at a given time [math]\displaystyle{ t }[/math] in the sandpile dynamics induced by some harmonic function [math]\displaystyle{ H }[/math] on the larger grid to the corresponding configurations which appear at the same time in the sandpile dynamics induced by the restriction of [math]\displaystyle{ H }[/math] to the respective sub-grid.[11] 由整值调和函数[math]\displaystyle{ H }[/math]在时间[math]\displaystyle{ t\in\mathbb{R}\setminus\mathbb{Z} }[/math],沙堆群的同一性[math]\displaystyle{ I }[/math]和底函数[math]\displaystyle{ \lfloor.\rfloor }[/math]导出的。[11]对于低阶多项式调和函数,沙堆动力学的特征是组成沙堆恒等式的斑块的光滑变换和明显守恒。例如,由[math]\displaystyle{ H=xy }[/math] 诱导的谐波动力学类似于动画中可视化的主对角线上恒等式的“平滑拉伸”。进一步推测了由相同的谐函数在不同尺寸的正方形网格上引起的动力学构型的弱收敛,这意味着可能存在标度限制。[11]这为扩展的和普通的沙堆组提出了一个自然的重归一化,这意味着在给定网格上的重复配置映射到子网格上的重复配置。非正式地,重归一化简单地映射了沙堆动力学中给定时间[math]\displaystyle{ t }[/math]时的构型,动力学由大型网格上的谐波函数[math]\displaystyle{ H }[/math]导出到相应的构型,这种构型在[math]\displaystyle{ H }[/math]限制到各自子网格的沙堆动力学中时同时出现。[11] ==Zcy讨论)上面的长句翻译需要重新审校Informaly, this renormalization simply maps

The divisible sandpile 可分割的沙堆

A strongly related model is the so called divisible sandpile model, introduced by Levine and Peres in 2008,[12] in which, instead of a discrete number of particles in each site [math]\displaystyle{ x }[/math], there is a real number [math]\displaystyle{ s(x) }[/math] representing the amount of mass on the site. In case such mass is negative, one can understand it as a hole. The topple occurs whenever a site has mass larger than 1; it topples the excess evenly between its neighbors resulting in the situation that, if a site is full at time [math]\displaystyle{ t }[/math], it will be full for all later times.

Levine和Peres在2008年提出了一个与之密切相关的模型,即所谓的“可分割的沙堆模型”。[13]与每个位置[math]\displaystyle{ x }[/math]上的沙粒数量为离散数不同,有一个实数[math]\displaystyle{ s(x) }[/math]代表位置的总质量。如果这个质量是负的,我们就可以把它理解为一个空洞。当一个位置上的质量大于1时,就会发生崩塌; 它将多余的部分均匀地分发给它的邻居,这就导致了如果一个位置在[math]\displaystyle{ t }[/math]的时刻是满的,它在以后的所有时间都是满的。


References引用

  1. 1.0 1.1 1.2 1.3 Bak, P.; Tang, C.; Wiesenfeld, K. (1987). "Self-organized criticality: an explanation of 1/ƒ noise". Physical Review Letters. 59 (4): 381–384. Bibcode:1987PhRvL..59..381B. doi:10.1103/PhysRevLett.59.381. PMID 10035754.
  2. 2.0 2.1 Holroyd, A.; Levine, L.; Mészáros, K.; Peres, Y.; Propp, J.; Wilson, B. (2008). Chip-Firing and Rotor-Routing on Directed Graphs. 60. pp. 331–364. arXiv:0801.3306. Bibcode 1987PhRvL..59..381B. doi:10.1007/978-3-7643-8786-0_17. ISBN 978-3-7643-8785-3. 
  3. Biggs, Norman L. (25 June 1997). "Chip-Firing and the Critical Group of a Graph" (PDF). Journal of Algebraic Combinatorics: 25–45. Retrieved 10 May 2014.
  4. Biggs, Norman L. (25 June 1997). "Chip-Firing and the Critical Group of a Graph" (PDF). Journal of Algebraic Combinatorics: 25–45. Retrieved 10 May 2014.
  5. S. Moghimi-Araghi; M. A. Rajabpour; S. Rouhani (2004). "Abelian Sandpile Model: a Conformal Field Theory Point of View". Nuclear Physics B. 718 (3): 362–370. arXiv:cond-mat/0410434. Bibcode:2005NuPhB.718..362M. doi:10.1016/j.nuclphysb.2005.04.002. S2CID 16233977.
  6. S. Moghimi-Araghi; M. A. Rajabpour; S. Rouhani (2004). "Abelian Sandpile Model: a Conformal Field Theory Point of View". Nuclear Physics B. 718 (3): 362–370. arXiv:cond-mat/0410434. Bibcode:2005NuPhB.718..362M. doi:10.1016/j.nuclphysb.2005.04.002. S2CID 16233977.
  7. Fey, A.; Levine, L.; Peres, Y. (2010). "Growth Rates and Explosions in Sandpiles". Journal of Statistical Physics. 138 (1–3): 143–159. arXiv:0901.3805. Bibcode:2010JSP...138..143F. doi:10.1007/s10955-009-9899-6. ISSN 0022-4715. S2CID 7180488.
  8. 8.0 8.1 Pegden, Wesley; Smart, Charles (2017). "Stability of patterns in the Abelian sandpile". arXiv:1708.09432 [math.AP].
  9. 9.0 9.1 9.2 9.3 Pegden, Wesley; Smart, Charles (2013). "Convergence of the Abelian sandpile". Duke Mathematical Journal. 162 (4): 627–642. arXiv:1105.0111. doi:10.1215/00127094-2079677. S2CID 13027232.
  10. 10.0 10.1 10.2 10.3 Levine, Lionel; Pegden, Wesley (2016). "Apollonian structure in the Abelian sandpile". Geometric and Functional Analysis. 26 (1): 306–336. doi:10.1007/s00039-016-0358-7. hdl:1721.1/106972. S2CID 119626417.
  11. 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 Lang, Moritz; Shkolnikov, Mikhail (2019-02-19). "Harmonic dynamics of the abelian sandpile". Proceedings of the National Academy of Sciences (in English). 116 (8): 2821–2830. doi:10.1073/pnas.1812015116. ISSN 0027-8424. PMC 6386721. PMID 30728300.
  12. Levine, Lionel; Peres, Yuval (2008-10-29). "Strong Spherical Asymptotics for Rotor-Router Aggregation and the Divisible Sandpile". Potential Analysis (in English). 30 (1): 1–27. arXiv:0704.0688. doi:10.1007/s11118-008-9104-6. ISSN 0926-2601. S2CID 2227479.
  13. Levine, Lionel; Peres, Yuval (2008-10-29). "Strong Spherical Asymptotics for Rotor-Router Aggregation and the Divisible Sandpile". Potential Analysis (in English). 30 (1): 1–27. arXiv:0704.0688. doi:10.1007/s11118-008-9104-6. ISSN 0926-2601. S2CID 2227479.

Further reading

External links