“熵和生命”的版本间的差异

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索
第274行: 第274行:
 
然而,熵的定义更普遍地基于系统状态的概率,不管系统是否是一个动态的系统(平衡可能是相关的)。其一,生命系统也不能孤立地存在,其二,热力学第二原理也并不要求沿着最短的路径将自由能转化为熵,这二者即使在那些可能与平衡相关的物理系统中也成立。有机生命体从阳光或高能化合物中吸收能量,最终将这种能量的一部分以熵的形式返回到环境中(通常是以热和水和二氧化碳等低自由能化合物的形式)。
 
然而,熵的定义更普遍地基于系统状态的概率,不管系统是否是一个动态的系统(平衡可能是相关的)。其一,生命系统也不能孤立地存在,其二,热力学第二原理也并不要求沿着最短的路径将自由能转化为熵,这二者即使在那些可能与平衡相关的物理系统中也成立。有机生命体从阳光或高能化合物中吸收能量,最终将这种能量的一部分以熵的形式返回到环境中(通常是以热和水和二氧化碳等低自由能化合物的形式)。
  
==See also==
+
==另请参见==
  
 
*[[Abiogenesis]]
 
*[[Abiogenesis]]
第296行: 第296行:
  
  
==References==
+
==参考文献==
  
 
{{Reflist|2}}
 
{{Reflist|2}}
第302行: 第302行:
  
  
==Further reading==
+
==推荐阅读==
  
 
* Schneider, E. and [[Dorion Sagan|Sagan, D.]] (2005).  ''[http://www.press.uchicago.edu/ucp/books/book/chicago/I/bo3533936.html Into the Cool: Energy Flow, Thermodynamics, and Life]''. University of Chicago Press, Chicago. {{ISBN|9780226739366}}
 
* Schneider, E. and [[Dorion Sagan|Sagan, D.]] (2005).  ''[http://www.press.uchicago.edu/ucp/books/book/chicago/I/bo3533936.html Into the Cool: Energy Flow, Thermodynamics, and Life]''. University of Chicago Press, Chicago. {{ISBN|9780226739366}}
第322行: 第322行:
 
类别: 生物进化
 
类别: 生物进化
  
==External links==
+
==相关链接==
  
 
Category:Biophysics
 
Category:Biophysics

2021年10月22日 (五) 15:11的版本

此词条暂由彩云小译翻译,翻译字数共2778,由潮升阶审校。

Research concerning the relationship between the thermodynamic quantity entropy and the evolution of life began around the turn of the 20th century. In 1910, American historian Henry Adams printed and distributed to university libraries and history professors the small volume A Letter to American Teachers of History proposing a theory of history based on the second law of thermodynamics and on the principle of entropy.[1][2]

关于热力学中熵量与生命演化关系的研究始于20世纪前后。1910年,美国历史学家亨利·亚当斯(Henry Adams)在印刷并分发给大学图书馆和历史教授的小册子——《给美国历史教师的信》中,提出了一种基于热力学第二定律和熵增原理的历史理论[1][2]

The 1944 book What is Life? by Nobel-laureate physicist Erwin Schrödinger stimulated further research in the field. In his book, Schrödinger originally stated that life feeds on negative entropy, or negentropy as it is sometimes called, but in a later edition corrected himself in response to complaints and stated that the true source is free energy. More recent work has restricted the discussion to Gibbs free energy because biological processes on Earth normally occur at a constant temperature and pressure, such as in the atmosphere or at the bottom of the ocean, but not across both over short periods of time for individual organisms.

1944年,诺贝尔物理学奖获得者埃尔温·薛定谔(Erwin Schrödinger)的著作——《什么是生命?》的出版,激发了对该领域的进一步研究。在书中,薛定谔一开始声称生命的源泉是负熵,然而该说法受到了公众的质疑,在后来的版本中,他纠正了自己的说法作为回应,声称真正的生命源泉是自由能。而最近的研究已经将该其限制为吉布斯自由能,因为地球上的生命过程通常发生在诸如大气层或海底等恒温恒压的条件下,对于单个生命体来说,在其较短的生命时间尺度内,不会遇到这二者激烈变化的情况,可以将其生活环境近似认为是恒温恒压的。

编者按:吉布斯自由能是自由能的一种,吉布斯自由能的变化可作为恒温、恒压过程自发与平衡的判据。吉布斯自由能_百度百科 (baidu.com)[1]


Ideas about the relationship between entropy and living organisms have inspired hypotheses and speculations in many contexts, including psychology, information theory, the origin of life, and the possibility of extraterrestrial life.

关于熵和生命有机体之间关系的观点,激发了各种各样的假说和猜想,涵盖了心理学、信息论、推测生命起源、探讨地外生命的存在可能性等不同学科和应用领域。



早期观点

In 1863, Rudolf Clausius published his noted memoir On the Concentration of Rays of Heat and Light, and on the Limits of Its Action, wherein he outlined a preliminary relationship, based on his own work and that of William Thomson (Lord Kelvin), between living processes and his newly developed concept of entropy.[citation needed] Building on this, one of the first to speculate on a possible thermodynamic perspective of organic evolution was the Austrian physicist Ludwig Boltzmann. In 1875, building on the works of Clausius and Kelvin, Boltzmann reasoned:

1863年,鲁道夫 · 克劳修斯(Rudolf Clausius)出版了他著名的研究报告——《论光与热的强度及其作用的局限性》 ,在其中,他在自己以及威廉 · 汤姆森(开尔文勋爵)研究的基础上,初步论述了生命过程和他新提出的熵的概念之间的关系。随后,奥地利物理学家路德维希·玻尔兹曼(Ludwig Boltzmann)第一个从热力学视角出发来推测生物进化的可能性。1875年,玻尔兹曼基于克劳修斯和开尔文的工作推断:



/* Styling for Template:Quote */ .templatequote { overflow: hidden; margin: 1em 0; padding: 0 40px; } .templatequote .templatequotecite {

   line-height: 1.5em;
   /* @noflip */
   text-align: left;
   /* @noflip */
   padding-left: 1.6em;
   margin-top: 0;

}


< ! ——有人知道这幅图是用来说明什么吗? —— >


< ! -- [从热力学系统的角度看太阳系]-->



In 1876, American civil engineer Richard Sears McCulloh, in his Treatise on the Mechanical Theory of Heat and its Application to the Steam-Engine, which was an early thermodynamics textbook, states, after speaking about the laws of the physical world, that "there are none that are established on a firmer basis than the two general propositions of Joule and Carnot; which constitute the fundamental laws of our subject." McCulloh then goes on to show that these two laws may be combined in a single expression as follows:

1876年,美国土木工程师理查德 · 西尔斯 · 麦卡洛(Richard Sears McCulloh)在他的早期热力学教科书《热学力学理论及其在蒸汽机上的应用》中提及到相关的物理学定律,他写道,“没有比焦耳和卡诺这两个命题更坚实的基础了,可以说它们是这门学科的基本定律也不为过。”麦卡洛继续指出,这两个定律可以用共同的数学形式简洁表示,其表示形式如下:


[math]\displaystyle{ S = \int { dQ \over \tau } }[/math]

where

其中

[math]\displaystyle{ S = }[/math] entropy

代表熵


[math]\displaystyle{ dQ = }[/math] a differential amount of heat passed into a thermodynamic system

代表传入热力学系统的热量的微分


[math]\displaystyle{ \tau = }[/math]absolute temperature

代表绝对温度



McCulloh then declares that the applications of these two laws, i.e. what are currently known as the first law of thermodynamics and the second law of thermodynamics, are innumerable:

麦卡洛例举了这两个定律——即现在总所周知的能量守恒定律和热力学第二定律,它们的应用数不胜数:



/* Styling for Template:Quote */ .templatequote { overflow: hidden; margin: 1em 0; padding: 0 40px; } .templatequote .templatequotecite {

   line-height: 1.5em;
   /* @noflip */
   text-align: left;
   /* @noflip */
   padding-left: 1.6em;
   margin-top: 0;

}


McCulloh gives a few of what he calls the “more interesting examples” of the application of these laws in extent and utility. His first example is physiology, wherein he states that “the body of an animal, not less than a steamer, or a locomotive, is truly a heat engine, and the consumption of food in the one is precisely analogous to the burning of fuel in the other; in both, the chemical process is the same: that called combustion.” He then incorporates a discussion of Antoine Lavoisier’s theory of respiration with cycles of digestion, excretion, and perspiration, but then contradicts Lavoisier with recent findings, such as internal heat generated by friction, according to the new theory of heat, which, according to McCulloh, states that the “heat of the body generally and uniformly is diffused instead of being concentrated in the chest”. McCulloh then gives an example of the second law, where he states that friction, especially in the smaller blood vessels, must develop heat. Undoubtedly, some fraction of the heat generated by animals is produced in this way. He then asks: “but whence the expenditure of energy causing that friction, and which must be itself accounted for?"

麦卡洛为了说明这些定律的适用范围和实际效用,给出了一些被他称之为“更有趣的例子” 。他举的第一个例子有关生理学,他指出,“动物的身体实质上就是一个热机,食物消耗过程跟蒸汽机或火车头的燃料燃烧过程正是类似的,因为这二者的化学过程是相同的: 即所谓的燃烧。”然后他把安托万-洛朗·德·拉瓦锡(Antoine-Laurent de Lavoisier)的呼吸理论与消化、排泄和排汗的循环结合起来进行讨论,发现新的理论与拉瓦锡的理论相矛盾,比如根据新的热理论,内部热量是由于摩擦而产生,麦卡洛指出:“身体的热量一般均匀地扩散,而不是集中在胸部”。随后麦卡洛又针对于热力学第二定律举了一个例子,他断言只要有摩擦,尤其是小血管内的摩擦,一定会产生热量。毫无疑问,动物体内的部分热量就是这样产生的。他问道: “但是因摩擦而消耗的能量从何而来,而这个过程本身又该怎么理解呢? ”



To answer this question he turns to the mechanical theory of heat and goes on to loosely outline how the heart is what he calls a “force-pump”, which receives blood and sends it to every part of the body, as discovered by William Harvey, and which “acts like the piston of an engine and is dependent upon and consequently due to the cycle of nutrition and excretion which sustains physical or organic life.” It is likely that McCulloh modeled parts of this argument on that of the famous Carnot cycle. In conclusion, he summarizes his first and second law argument as such:

为了回答这个问题,他转而求助于热力学理论,他先是大致论述了心脏是如何成为他所说的“力泵”的,正如威廉 · 哈维(William Harvey)所发现的那样,心脏接收血液,并将血液输送到身体的每一个部位,“它起着引擎活塞的作用,依赖于并支持着维持物理或有机生命的营养和排泄的循环。”麦卡洛的这一论断可能从著名的卡诺循环中获得了灵感。最后,他总结了他的第一和第二定律:


{{quote|Everything physical being subject to the law of conservation of energy, it follows that no physiological action can take place except with expenditure of energy derived from food; also, that an animal performing mechanical work must from the same quantity of food generate less heat than one abstaining from exertion, the difference being precisely the heat equivalent of that of work. The problem of organization in living systems increasing despite the second law is known as the Schrödinger paradox. In his note to Chapter 6 of What is Life?, however, Schrödinger remarks on his usage of the term negative entropy:

一切物理活动都受能量守恒定律的制约,因此,任何生理活动不可能不消耗从食物中获得的能量。而且,从同等质量食物中积累的热量,运动的动物比起不运动的动物要少,两者之间的差别应该正好等于动物运动做功产生的热量。生命系统组织形式的问题与热力学第二定律之间的存在的矛盾被称为薛定谔悖论。在《什么是生命?》第六章中,薛定谔谈到了他对负熵这个术语的使用:

/* Styling for Template:Quote */ .templatequote { overflow: hidden; margin: 1em 0; padding: 0 40px; } .templatequote .templatequotecite {

   line-height: 1.5em;
   /* @noflip */
   text-align: left;
   /* @noflip */
   padding-left: 1.6em;
   margin-top: 0;

}


负熵

In the 1944 book What is Life?, Austrian physicist Erwin Schrödinger, who in 1933 had won the Nobel Prize in Physics, theorized that life – contrary to the general tendency dictated by the second law of thermodynamics, which states that the entropy of an isolated system tends to increase – decreases or keeps constant its entropy by feeding on negative entropy.[3] The problem of organization in living systems increasing despite the second law is known as the Schrödinger paradox.[4] In his note to Chapter 6 of What is Life?, however, Schrödinger remarks on his usage of the term negative entropy:

1944年,在诺贝尔物理学奖获得者埃尔温·薛定谔(Erwin Schrödinger)的著作——《什么是生命?》中认为,生命与热力学第二定律所规定的一般趋势相反,通常情况下,一个孤立系统的熵往往倾向于增加,但是生命可以依赖于负熵从而保持其熵量不变甚至减少[3]生命系统组织形式的问题与热力学第二定律之间的存在的矛盾被称为薛定谔悖论。在《什么是生命?》第六章中,薛定谔谈到了他对负熵这个术语的使用:


This, Schrödinger argues, is what differentiates life from other forms of the organization of matter. In this direction, although life's dynamics may be argued to go against the tendency of the second law, life does not in any way conflict with or invalidate this law, because the principle that entropy can only increase or remain constant applies only to a closed system which is adiabatically isolated, meaning no heat can enter or leave, and the physical and chemical processes which make life possible do not occur in adiabatic isolation, i.e. living systems are open systems. Whenever a system can exchange either heat or matter with its environment, an entropy decrease of that system is entirely compatible with the second law.[5]


薛定谔认为,这就是生命区别于其他物质组织形式的原因。在这个方向上,生命的动力学可能被认为与热力学第二定律的趋势相悖,但生命并不以任何方式与这个定律冲突或使之无效,因为熵只能增加或保持不变的原理只适用于绝热孤立的封闭系统,系统封闭意味着没有热量可以进入或离开,但是使生命产生的物理和化学过程不会在绝热孤立的条件下发生,即生命系统是开放系统。当一个系统可以与其环境交换热量或物质时,该系统的熵减完全符合热力学第二定律[5]



/* Styling for Template:Quote */ .templatequote { overflow: hidden; margin: 1em 0; padding: 0 40px; } .templatequote .templatequotecite {

   line-height: 1.5em;
   /* @noflip */
   text-align: left;
   /* @noflip */
   padding-left: 1.6em;
   margin-top: 0;

}

Schrödinger asked the question: "How does the living organism avoid decay?" The obvious answer is: "By eating, drinking, breathing and (in the case of plants) assimilating." While energy from nutrients is necessary to sustain an organism's order, Schrödinger also presciently postulated the existence of other molecules equally necessary for creating the order observed in living organisms: "An organism's astonishing gift of concentrating a stream of order on itself and thus escaping the decay into atomic chaos – of drinking orderliness from a suitable environment – seems to be connected with the presence of the aperiodic solids..." We now know that this "aperiodic" crystal is DNA, and that its irregular arrangement is a form of information. "The DNA in the cell nucleus contains the master copy of the software, in duplicate. This software seems to control by specifying an algorithm, or set of instructions, for creating and maintaining the entire organism containing the cell."[6]

薛定谔提出了一个问题: “活的有机体如何避免衰变? ”显而易见的答案是: “通过吃、喝、呼吸或吸收(对植物来说)。”来自营养物质的能量是维持有机体秩序的必要条件,但薛定谔还预见性地假定了某种物质的存在,这种物质生命秩序的产生来说也是必要的: “一个有机体的惊人天赋是将一股秩序流集中于自身,从而避免衰变成一群混乱的原子。而在适宜的环境中维持自身秩序的特性,似乎与非周期性固体的存在有关.....”现在我们知道这种“非周期性”晶体是 DNA,而它不规则的排列则是一种信息形式。“细胞核中的DNA就像是计算机软件的主拷贝,一式两份。而这个”软件“似乎是通过指定的算法或指令来控制,以创造和维护包括细胞在内的整个有机体[6]。”



DNA and other macromolecules determine an organism's life cycle: birth, growth, maturity, decline, and death. Nutrition is necessary but not sufficient to account for growth in size, as genetics is the governing factor. At some point, virtually all organisms normally decline and die even while remaining in environments that contain sufficient nutrients to sustain life. The controlling factor must be internal and not nutrients or sunlight acting as causal exogenous variables. Organisms inherit the ability to create unique and complex biological structures; it is unlikely for those capabilities to be reinvented or to be taught to each generation. Therefore, DNA must be operative as the prime cause in this characteristic as well. Applying Boltzmann's perspective of the second law, the change of state from a more probable, less ordered, and higher entropy arrangement to one of less probability, more order, and lower entropy (as is seen in biological ordering) calls for a function like that known of DNA. DNA's apparent information-processing function provides a resolution of the Schrödinger paradox posed by life and the entropy requirement of the second law.[7]

DNA 和其他大分子决定了有机体的生命周期: 出生、成长、成熟、衰退和死亡。营养对于生命体体型的增长是必要的,但不足以解释全部,因为基因是其主导因素。在某种程度上,即使它们仍然生活在含有足够维持生命的营养物质的环境中,几乎所有的生物也通常都会衰退或死亡。而这一过程的控制因素是内在的,外界的营养或阳光并不能视作是因变量。有机体继承了创造独特而复杂的生物结构的能力,而这样的能力不太可能被重新发明或者被教授给每一代。因而,DNA作为这一特性的主要原因而发挥作用。从玻尔兹曼关于热力学第二定律的观点来看,状态从更可能、更无序和更高熵的排列转变为更少概率、更有序和更低熵的排列(正如在生物排序中看到的那样) ,需要一个像 DNA 那样的函数。DNA 的表观信息处理功能为解决薛定谔悖论提供了方案,而该悖论正是从生命和热力学第二定律的熵的角度而提出的[7]

吉布斯自由能与生物进化

In recent years, the thermodynamic interpretation of evolution in relation to entropy has begun to utilize the concept of the Gibbs free energy, rather than entropy.[8][9] This is because biological processes on Earth take place at roughly constant temperature and pressure, a situation in which the Gibbs free energy is an especially useful way to express the second law of thermodynamics. The Gibbs free energy is given by:

近年来,进化论中有关熵的热力学解释已经开始使用吉布斯自由能的概念,而不是熵[8][9] 。这是因为地球上的生物过程是在大致恒定的温度和压力下发生的,在这种情况下,吉布斯自由能是来表达热力学第二定律的一种特别有用的形式。吉布斯自由能的表示形式是:


[math]\displaystyle{ \Delta G \equiv \Delta H-T \, \Delta S }[/math]

where

其中



[math]\displaystyle{ G = }[/math] Gibbs free energy

代表吉布斯自由能


[math]\displaystyle{ H = }[/math] enthalpy passed into a thermodynamic system

代表热力学系统的焓


[math]\displaystyle{ T = }[/math] absolute temperature

代表绝对温度



[math]\displaystyle{ S = }[/math] entropy

代表熵


The minimization of the Gibbs free energy is a form of the principle of minimum energy, which follows from the entropy maximization principle for closed systems. Moreover, the Gibbs free energy equation, in modified form, can be utilized for open systems when chemical potential terms are included in the energy balance equation. In a popular 1982 textbook, Principles of Biochemistry, noted American biochemist Albert Lehninger argued that the order produced within cells as they grow and divide is more than compensated for by the disorder they create in their surroundings in the course of growth and division. In short, according to Lehninger, "Living organisms preserve their internal order by taking from their surroundings free energy, in the form of nutrients or sunlight, and returning to their surroundings an equal amount of energy as heat and entropy."[10]

吉布斯自由能最小化是最小能量原理的一种形式,它遵循封闭系统的熵最大化原理。此外,当能量平衡方程中包含化学势时,修正的吉布斯自由能方程可适用于开放系统。美国著名生物化学家阿尔伯特 · 莱宁格(Albert Lehninger)在1982年出版的一本颇受欢迎的教科书《生物化学原理》中指出,细胞在生长和分裂过程中所产生的秩序,远远超过了它们在生长和分裂过程中在周围环境中所产生的混乱所能补偿的程度。简而言之,根据莱宁格的说法,“生物体通过从周围环境中获取营养或阳光等形式的自由量,并向周围环境返回与热量和熵等量的能量,从而保持其内部秩序[10]。”


Similarly, according to the chemist John Avery, from his 2003 book Information Theory and Evolution, we find a presentation in which the phenomenon of life, including its origin and evolution, as well as human cultural evolution, has its basis in the background of thermodynamics, statistical mechanics, and information theory. The (apparent) paradox between the second law of thermodynamics and the high degree of order and complexity produced by living systems, according to Avery, has its resolution "in the information content of the Gibbs free energy that enters the biosphere from outside sources."[11] Assuming evolution drives organisms towards higher information content, it is postulated by Gregory Chaitin that life has properties of high mutual information[12], and by Tamvakis that life can be quantified using mutual information density metrics, a generalisation of the concept of Biodiversity. [13]

类似地,根据化学家约翰·艾弗里(John Avery)在他2003年出版的《信息论和进化论》一书中的说法,任何生命现象,包括其起源和进化,以及人类文化进化,都有其热力学、统计力学和信息论的背景作为基础。根据艾弗里的说法,热力学第二定律和生命系统产生的高度有序和复杂性之间明显的悖论在“从外界进入生物圈的吉布斯自由能的信息量”中得到了解决[11] 。格里高利·蔡廷(Gregory Chaitin) 假设生命具有高度信息交互的特性[12],Tamvakis 假设生命可以使用互信息密度度量来量化(这是生物多样性概念的一个概括)[13],进化驱使生物体向着更高的信息量发展。



In a study titled "Natural selection for least action" published in the Proceedings of the Royal Society A., Ville Kaila and Arto Annila of the University of Helsinki describe how the process of natural selection responsible for such local increase in order may be mathematically derived directly from the expression of the second law equation for connected non-equilibrium open systems. The second law of thermodynamics can be written as an equation of motion to describe evolution, showing how natural selection and the principle of least action can be connected by expressing natural selection in terms of chemical thermodynamics. In this view, evolution explores possible paths to level differences in energy densities and so increase entropy most rapidly. Thus, an organism serves as an energy transfer mechanism, and beneficial mutations allow successive organisms to transfer more energy within their environment.[14][15]

在皇家学会学报上发表的一篇题为《最小行动的自然选择》的研究中,赫尔辛基大学的 Ville Kaila 和 Arto Annila 描述了如何从连通的非平衡开放系统的热力学第二定律方程式的表达式上,直接从数学上推导出导致这种局部增长的自然选择过程。热力学第二定律可以被写成一个描述进化的运动方程,在化学热力学方面来表述自然选择和最小行动原则是如何联系在一起的。在这种观点中,生物在进化过程中探索了能量密度差异的可能途径,从而最快速地增加熵。其中,有机体起着能量传递机制的作用,有益突变允许后代有机体在其环境中传递更多的能量[14][15]




熵与生命的起源

The second law of thermodynamics applied to the origin of life is a far more complicated issue than the further development of life, since there is no "standard model" of how the first biological lifeforms emerged, only a number of competing hypotheses. The problem is discussed within the context of abiogenesis, implying gradual pre-Darwinian chemical evolution. In 1924, Alexander Oparin suggested that sufficient energy for generating early lifeforms from non-living molecules was provided in a "primordial soup". The Belgian scientist Ilya Prigogine was awarded with a Nobel Prize in 1977 for an analysis in this area. A related topic is the probability that life would emerge, which has been discussed in several studies, for example by Russell Doolittle.[16]

热力学第二定律应用于生命的起源是一个比生命的发展演化更复杂的问题,因为对于第一个生物体是如何出现的没有“标准模型” ,只有一些争论不休的假设。这个问题是在自然发生的背景下讨论的,意味着在达尔文之前,化学进化被认为是渐进的。1924年,亚历山大·伊万诺维奇·奥巴林(Alexander Oparin) 提出,从无生命的分子中产生早期生命形式所需的足够能量来自于“原始汤”。1977年,比利时科学家伊利亚 · 普里戈金(Ilya Prigogine)因对这一领域的研究而获得诺贝尔奖。另一个相关的课题是生命出现的可能性,这已经在一些研究中讨论过了,比如罗素 · 杜立特尔(Russell Doolittle)的研究[16]



In 2009, physicist Karo Michaelian published a thermodynamic dissipation theory for the origin of life [17][18] in which the fundamental molecules of life; nucleic acids, amino acids, carbohydrates (sugars), and lipids are considered to have been originally produced as microscopic dissipative structures (through Prigogine's dissipative structuring [19]) as pigments at the ocean surface to absorb and dissipate into heat the UVC flux of solar light arriving at Earth's surface during the Archean, just as do organic pigments in the visible region today. These UVC pigments were formed through photochemical dissipative structuring from more common and simpler precursor molecules like HCN and H2O under the UVC flux of solar light [17][18][20].The thermodynamic function of the original pigments (fundamental molecules of life) was to increase the entropy production of the incipient biosphere under the solar photon flux and this, in fact, remains as the most important thermodynamic function of the biosphere today, but now mainly in the visible region where photon intensities are higher and biosynthetic pathways are more complex, allowing pigments to be synthesized from lower energy visible light instead of UVC light which no longer reaches Earth's surface.

2009年,物理学家卡罗 · 麦克里安(Karo Michaelian) 发表了关于生命起源的热力学耗散理论 [17][18] ,其中生命的基本分子,核酸、氨基酸、碳水化合物(糖)和脂类最初被认为是在海洋表面产生的类似色素的某种微观耗散结构(如普里戈金耗散结构 [19]),它们吸收太古代期间到达地球表面的太阳光紫外线通量,并将其散发为热量,其外表看起来就像有机色素一样。这些分子在太阳光的紫外线的作用下,由较常见和较简单的分子(如HCN 和 H2O)形成光化学耗散结构 [17][18][20]。此时原始色素(即生命的基本分子)的热力学功能是在太阳辐射下增加初期生物圈的熵,事实上,这仍然是生物圈今天最重要的热力学功能,但现在主要是在可见光区域,那里辐射强度更高,化合物合成途径更复杂,允许色素利用低能量的可见光而不仅限于到达地球表面的紫外线合成化合物。




熵与寻找地外生命

In 1964, James Lovelock was among a group of scientists requested by NASA to make a theoretical life-detection system to look for life on Mars during the upcoming space mission. When thinking about this problem, Lovelock wondered “how can we be sure that Martian life, if any, will reveal itself to tests based on Earth’s lifestyle?”[21] To Lovelock, the basic question was “What is life, and how should it be recognized?” When speaking about this issue with some of his colleagues at the Jet Propulsion Laboratory, he was asked what he would do to look for life on Mars. To this, Lovelock replied "I’d look for an entropy reduction, since this must be a general characteristic of life."[21]

1964年,詹姆斯 · 洛夫洛克(James Lovelock)和其他一些科学家应美国航空航天局(NASA)的要求,建立了一个理论上的生命探测系统,以便在即将到来的太空任务中寻找火星上的生命。当思考这个问题时,洛夫洛克想知道“我们怎么能确定火星生命的存在,如果有的话,它会怎样在基于地球生活环境的测试中显露出来呢[21]? ”对洛夫洛克来说,最基本的问题是“什么是生命,以及如何识别生命? ”当他与喷气动力实验室的一些同事讨论这个问题时,就有人这样问他。对此,洛夫洛克回答说: “我会寻找熵减少的地方,因为这一定是生命的一般特征[21]。”


In 2013, Azua-Bustos and Vega argued that, disregarding the types of lifeforms that might be envisioned both on Earth and elsewhere in the Universe, all should share in common the attribute of decreasing their internal entropy at the expense of free energy obtained from their surroundings. As entropy allows the quantification of the degree of disorder in a system, any envisioned lifeform must have a higher degree of order than its immediate supporting environment. These authors showed that by using fractal mathematics analysis alone, they could readily quantify the degree of structural complexity difference (and thus entropy) of living processes as distinct entities separate from their similar abiotic surroundings. This approach may allow the future detection of unknown forms of life both in the Solar System and on recently discovered exoplanets based on nothing more than entropy differentials of complementary datasets (morphology, coloration, temperature, pH, isotopic composition, etc.).[22]

2013年,Azua-Bustos和Vega认为,抛开地球上和宇宙其他地方可能存在的生命形式,所有生命都应该有一个共同的属性,即以消耗从周围环境获得的自由能为代价,来减少它们的内部熵。由于熵允许对系统的无序程度进行量化,任何想象中的生命形式都必须比它的生活环境有更高的有序程度。这些人认为,仅通过使用分形数学分析,他们可以很容易地量化生命过程的结构复杂性以及与其独立但相似的非生物环境的差异(即熵的不同)。这种方法可以让我们在未来仅根据不同的数据集(如形态、颜色、温度、pH值、同位素组成等数据集)的熵差,就能在太阳系和最近发现的系外行星上发现未知的生命形式[22]

心理学中的熵

The notion of entropy as disorder has been transferred from thermodynamics to psychology by Polish psychiatrist Antoni Kępiński, who admitted being inspired by Erwin Schrödinger.[23] In his theoretical framework devised to explain mental disorders (the information metabolism theory), the difference between living organisms and other systems was explained as the ability to maintain order. Contrary to inanimate matter, organisms maintain the particular order of their bodily structures and inner worlds which they impose onto their surroundings and forward to new generations. The life of an organism or the species ceases as soon as it loses that ability.[24] Maintenance of that order requires continual exchange of information between the organism and its surroundings. In higher organisms, information is acquired mainly through sensory receptors and metabolised in the nervous system. The result is action – some form of motion, for example locomotion, speech, internal motion of organs, secretion of hormones, etc. The reactions of one organism become an informational signal to other organisms. Information metabolism, which allows living systems to maintain the order, is possible only if a hierarchy of value exists, as the signals coming to the organism must be structured. In humans that hierarchy has three levels, i.e. biological, emotional, and sociocultural.[25] Kępiński explained how various mental disorders are caused by distortions of that hierarchy, and that the return to mental health is possible through its restoration.[26]

受到了埃尔温·薛定谔的启发,熵作为无序的概念已经由波兰精神病学家 Antoni Kępiński从热力学应用于心理学[23] 。在他为解释精神障碍而提出的理论框架(信息代谢理论)中,生命体和其他系统的区别在于维持秩序的能力。与无生命物质相反,有机体维持着它们的身体结构和内部世界的特定秩序,并且这些秩序强加于它们的周围环境并传递给下一代。有机体或物种的生命一旦失去这种能力就会死亡[24] ,而维持这种秩序需要生物体与其周围环境之间不断地交换信息。在高等生命体中,信息主要通过感觉受体获得,并在神经系统中进行代谢,其结果是行动——即某种形式的运动,例如运动、说话、器官的内部运动、激素的分泌等等,这意味着一个有机体的反应成为给其他有机体的信号。因为到达生物体的信号必须是有结构的,所以只有在存在层次结构的情况下,信息新陈代谢允许生命系统维持秩序才成为可能。而在人类身上存在三个结构层次,即生理,情感和社会文化[25]。Kępiński 解释了扭曲的结构层次是如何引起各种各样的精神障碍的,并且可以通过治疗恢复精神健康。



The idea was continued by Struzik, who proposed that Kępiński's information metabolism theory may be seen as an extension of Léon Brillouin's negentropy principle of information.[27] In 2011, the notion of "psychological entropy" was reintroduced to psychologists by Hirsh et al.[28] Similarly to Kępiński, these authors noted that uncertainty management is a critical ability for any organism. Uncertainty, arising due to the conflict between competing perceptual and behavioral affordances, is experienced subjectively as anxiety. Hirsh and his collaborators proposed that both the perceptual and behavioral domains may be conceptualized as probability distributions and that the amount of uncertainty associated with a given perceptual or behavioral experience can be quantified in terms of Claude Shannon’s entropy formula.

这个想法得到了 strutzik 的继续发展,他提出, Kępiński 的信息代谢理论可以看作是Léon Brillouin的信息负熵原理的延伸。2011年,赫什(Hirsh)等人重新向心理学家引入了“心理熵”的概念[28] 。与Kępiński类似,他们指出,对不确定性的管理对任何有机体来说都是一种至关重要的能力。不确定性是由于竞争和行为负担之间的冲突而产生的,主观上被体验为焦虑。赫什和他的合作者提出,知觉和行为可以概念化为概率分布,给定的知觉或行为经验相关的不确定性可以用克劳德·香农(Claude Shannon)的熵公式来量化。





反对意见

模板:Expand section

Entropy is well defined for equilibrium systems, so objections to the extension of the second law and of entropy to biological systems, especially as it pertains to its use to support or discredit the theory of evolution, have been stated.[29][30] Living systems and indeed many other systems and processes in the universe operate far from equilibrium, whereas the second law succinctly states that isolated systems evolve toward thermodynamic equilibrium — the state of maximum entropy.

对于平衡系统来说,熵是一个很好的定义。反对意见集中于将热力学第二定律和熵扩展到生物系统,特别是用它来支持或否定进化论[29][30] 。生命系统和宇宙中的许多其他系统和过程都偏离平衡状态,而热力学第二定律简洁地指出,孤立的系统会朝着热力学平衡,即熵最大的状态演化。


However, entropy is well defined much more broadly based on the probabilities of a system's states, whether or not the system is a dynamic one (for which equilibrium could be relevant). Even in those physical systems where equilibrium could be relevant, (1) living systems cannot persist in isolation, and (2) the second principle of thermodynamics does not require that free energy be transformed into entropy along the shortest path: living organisms absorb energy from sunlight or from energy-rich chemical compounds and finally return part of such energy to the environment as entropy (generally in the form of heat and low free-energy compounds such as water and carbon dioxide).

然而,熵的定义更普遍地基于系统状态的概率,不管系统是否是一个动态的系统(平衡可能是相关的)。其一,生命系统也不能孤立地存在,其二,热力学第二原理也并不要求沿着最短的路径将自由能转化为熵,这二者即使在那些可能与平衡相关的物理系统中也成立。有机生命体从阳光或高能化合物中吸收能量,最终将这种能量的一部分以熵的形式返回到环境中(通常是以热和水和二氧化碳等低自由能化合物的形式)。

另请参见

  • Extropy – a metaphorical term defining the extent of a living or organizational system's intelligence, functional order, vitality, energy, life, experience, and capacity and drive for improvement and growth


参考文献

  1. 1.0 1.1 Adams, Henry. (1986). History of the United States of America During the Administration of Thomas Jefferson (pg. 1299). Library of America.
  2. 2.0 2.1 Adams, Henry. (1910). A Letter to American Teachers of History. Research concerning the relationship between the thermodynamic quantity entropy and the evolution of life began around the turn of the 20th century. In 1910, American historian Henry Adams printed and distributed to university libraries and history professors the small volume A Letter to American Teachers of History proposing a theory of history based on the second law of thermodynamics and on the principle of entropy. 关于热力学量熵与生命进化关系的研究始于20世纪之交。1910年,美国历史学家 Henry Adams 印刷并分发给大学图书馆和历史学教授小册子《给美国历史教师的信》 ,提出了一种基于热力学第二定律和熵原理的历史理论。 Google Books, Scanned PDF. Washington.
  3. 3.0 3.1 Schrödinger, Erwin (1944). What is Life – the Physical Aspect of the Living Cell. Cambridge University Press. ISBN 978-0-521-42708-1. 
  4. Schneider, Eric D.; Sagan, Dorion (2005). Into the Cool: Energy Flow Thermodynamics and Life. Chicago, United States: The University of Chicago Press. pp. 15. 
  5. 5.0 5.1 The common justification for this argument, for example, according to renowned chemical engineer Kenneth Denbigh in his 1955 book The Principles of Chemical Equilibrium, is that "living organisms are open to their environment and can build up at the expense of foodstuffs which they take in and degrade."
  6. 6.0 6.1 Nelson, P. (2004). Biological Physics, Energy, Information, Life. W.H. Freeman and Company.
  7. 7.0 7.1 Peterson, Jacob. "Understanding the Thermodynamics of Biological Order". The American Biology Teacher, 74, Number 1, January 2012, pp. 22–24.
  8. 8.0 8.1 Moroz, Adam (2012). The Common Extremalities in Biology and Physics. Elsevier. ISBN 978-0-12-385187-1. 
  9. 9.0 9.1 Higgs, P. G., & Pudritz, R. E. (2009). "A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code" Accepted for publication in Astrobiology
  10. 10.0 10.1 Lehninger, Albert (1993). Principles of Biochemistry, 2nd Ed.. Worth Publishers. ISBN 978-0-87901-711-8. https://archive.org/details/isbn_9780879017118. 
  11. 11.0 11.1 Avery, John (2003). Information Theory and Evolution. World Scientific. ISBN 978-981-238-399-0. 
  12. 12.0 12.1 Chaitin, Gregory (1979). "Towards a mathematical definition of Life" (PDF). MIT press. pp. 477–498.
  13. 13.0 13.1 Tamvakis, Ioannis (2018). "Quantifying life".
  14. 14.0 14.1 Lisa Zyga (11 August 2008). "Evolution as Described by the Second Law of Thermodynamics". Physorg.com. Retrieved 14 August 2008.
  15. 15.0 15.1 Kaila, V. R.; Annila, A. (8 November 2008). "Natural selection for least action". Proceedings of the Royal Society A. 464 (2099): 3055–3070. Bibcode:2008RSPSA.464.3055K. doi:10.1098/rspa.2008.0178.
  16. 16.0 16.1 Russell Doolittle, "The Probability and Origin of Life" in Scientists Confront Creationism (1984) Ed. Laurie R. Godfrey, p. 85
  17. 17.0 17.1 17.2 17.3 Michaelian, Karo (2009). "Thermodynamic Origin of Life". arXiv:0907.0042. doi:10.5194/esd-2-37-2011. S2CID 14574109. {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: url-status (link)
  18. 18.0 18.1 18.2 18.3 Michaelian, K. (11 March 2011). "Thermodynamic dissipation theory for the origin of life". Earth System Dynamics (in English). 2 (1): 37–51. doi:10.5194/esd-2-37-2011. ISSN 2190-4979. S2CID 14574109.
  19. 19.0 19.1 Prigogine, I. (Ilya) (1967). Introduction to thermodynamics of irreversible processes. Interscience. OCLC 1171126768. http://worldcat.org/oclc/1171126768. 
  20. 20.0 20.1 Michaelian, Karo (22 August 2017). "Microscopic Dissipative Structuring at the Origin of Life". dx.doi.org. doi:10.1101/179382. S2CID 12239645. Retrieved 5 October 2020.
  21. 21.0 21.1 21.2 21.3 Lovelock, James (1979). GAIA – A New Look at Life on Earth. Oxford University Press. ISBN 978-0-19-286218-1. 
  22. 22.0 22.1 Vega-Martínez, Cristian; Azua-Bustos, Armando (2013). "The potential for detecting 'life as we don't know it' by fractal complexity analysis". International Journal of Astrobiology (in English). 12 (4): 314–320. doi:10.1017/S1473550413000177. hdl:10533/131814. ISSN 1475-3006.
  23. 23.0 23.1 Kępiński, Antoni (1972). Rhythm of life (in Polish). Kraków: Wydawnictwo Literackie. 
  24. 24.0 24.1 Pietrak, Karol (2018). "The foundations of socionics - a review". Cognitive Systems Research. 47: 1–11. doi:10.1016/J.COGSYS.2017.07.001. S2CID 34672774.
  25. 25.0 25.1 Schochow, Maximilian; Steger, Florian (2016). "Antoni Kepiński (1918–1972), pioneer of post-traumatic stress disorder". The British Journal of Psychiatry. 208 (6): 590. doi:10.1192/bjp.bp.115.168237. PMID 27251694.
  26. Bulaczek, Aleksandra (2013). "Relations patient – doctor in axiological psychiatry of Antoni Kępiński (in Polish)" (PDF). Studia Ecologiae et Bioethicae UKSW. 11 (2): 9–28. doi:10.21697/seb.2013.11.2.01.
  27. Struzik, Tadeusz (1987). "Kepiński's Information Metabolism, Carnot's Principle and Information Theory". International Journal of Neuroscience. 36 (1–2): 105–111. doi:10.3109/00207458709002144. PMID 3654085.
  28. 28.0 28.1 Hirsh, Jacob B.; Mar, Raymond A.; Peterson, Jordan B. (2012). "Psychological Entropy: A Framework for Understanding Uncertainty-Related Anxiety". Psychological Review. 119 (Advance online publication): 304–320. doi:10.1037/a0026767. PMID 22250757.
  29. 29.0 29.1 Callen, Herbert B (1985). Thermodynamics and an Introduction to Statistical Thermodynamics. John Wiley and Sons.
  30. 30.0 30.1 Ben-Naim, Arieh (2012). Entropy and the Second Law. World Scientific Publishing.
  31. Haddad, Wassim M.; Chellaboina, VijaySekhar; Nersesov, Sergey G. (2005). Thermodynamics – A Dynamical Systems Approach. Princeton University Press. ISBN 978-0-691-12327-1. 
  32. Schrödinger, Erwin (1944). What is Life – the Physical Aspect of the Living Cell. Cambridge University Press. ISBN 978-0-521-42708-1. 


推荐阅读