更改

跳到导航 跳到搜索
删除25,534字节 、 2021年8月25日 (星期三)
无编辑摘要
第10行: 第10行:  
模板:需要更多的引用
 
模板:需要更多的引用
   −
[[File:Schrodingers cat.svg|thumb|upright=1.5|Schrödinger's cat: a cat, a flask of poison, and a [[radioactive]] source are placed in a sealed box. If an internal monitor (e.g. [[Geiger counter]]) detects radioactivity (i.e. a single atom decaying), the flask is shattered, releasing the poison, which kills the cat. The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is ''simultaneously'' alive ''and'' dead. Yet, when one looks in the box, one sees the cat ''either'' alive ''or'' dead, not both alive ''and'' dead.  This poses the question of when exactly quantum superposition ends and reality collapses into one possibility or the other.|链接=Special:FilePath/Schrodingers_cat.svg]]<br>
+
[[File:Schrodingers cat.svg|thumb|upright=1.5|Schrödinger's cat: a cat, a flask of poison, and a [[radioactive]] source are placed in a sealed box. If an internal monitor (e.g. [[Geiger counter]]) detects radioactivity (i.e. a single atom decaying), the flask is shattered, releasing the poison, which kills the cat. The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is ''simultaneously'' alive ''and'' dead. Yet, when one looks in the box, one sees the cat ''either'' alive ''or'' dead, not both alive ''and'' dead.  This poses the question of when exactly quantum superposition ends and reality collapses into one possibility or the other.|链接=Special:FilePath/Schrodingers_cat.svg]]
文件:薛定谔的猫:将一只猫,一瓶毒药和放射源入密闭容器。如果盒内监测器(例如盖革计数器)检测到放射性,即单个原子衰变,烧瓶会破碎,毒药释放,杀死猫。量子力学的哥本哈根诠释Copenhagen interpretation认为,一段时间之后,猫既活着又死了。但是,人们看向盒内时,猫不是活着就是死了,不是既活着又死了。这就提出了一个问题,量子叠加具体何时结束,现实何时塌陷成一种或另一种可能性。
     −
Schrödinger's cat: a cat, a flask of poison, and a radioactive source are placed in a sealed box. If an internal monitor (e.g. Geiger counter) detects radioactivity (i.e. a single atom decaying), the flask is shattered, releasing the poison, which kills the cat. The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is simultaneously alive and dead. Yet, when one looks in the box, one sees the cat either alive or dead, not both alive and dead.  This poses the question of when exactly quantum superposition ends and reality collapses into one possibility or the other.]]
+
 
 +
Schrödinger's cat: a cat, a flask of poison, and a radioactive source are placed in a sealed box. If an internal monitor (e.g. Geiger counter) detects radioactivity (i.e. a single atom decaying), the flask is shattered, releasing the poison, which kills the cat. The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is simultaneously alive and dead. Yet, when one looks in the box, one sees the cat either alive or dead, not both alive and dead.  This poses the question of when exactly quantum superposition ends and reality collapses into one possibility or the other.
    
薛定谔的猫:将一只猫,一瓶毒药和放射源入密闭容器。如果盒内监测器(如盖革计数器)检测到放射性,即单个原子衰变,烧瓶会破碎,毒药释放,杀死猫。量子力学的'''<font color="ff8000">哥本哈根诠释Copenhagen interpretation</font>'''认为,一段时间之后,猫既活着又死了。但是,人们看向盒内时,猫不是活着就是死了,不是既活着又死了。这就提出了一个问题,量子叠加具体何时结束,现实何时塌陷成一种或另一种可能性。
 
薛定谔的猫:将一只猫,一瓶毒药和放射源入密闭容器。如果盒内监测器(如盖革计数器)检测到放射性,即单个原子衰变,烧瓶会破碎,毒药释放,杀死猫。量子力学的'''<font color="ff8000">哥本哈根诠释Copenhagen interpretation</font>'''认为,一段时间之后,猫既活着又死了。但是,人们看向盒内时,猫不是活着就是死了,不是既活着又死了。这就提出了一个问题,量子叠加具体何时结束,现实何时塌陷成一种或另一种可能性。
第19行: 第19行:     
'''Schrödinger's cat''' is a [[thought experiment]], sometimes described as a [[paradox]], devised by Austrian physicist [[Erwin Schrödinger]] in 1935, though the idea originated from [[Albert Einstein]].<ref name="Schrodinger1935"><br>
 
'''Schrödinger's cat''' is a [[thought experiment]], sometimes described as a [[paradox]], devised by Austrian physicist [[Erwin Schrödinger]] in 1935, though the idea originated from [[Albert Einstein]].<ref name="Schrodinger1935"><br>
</ref>薛定谔的猫是一个'''<font color="ff8000">思想实验thought experiment</font>''',有时被称为'''<font color="ff8000">悖论paradox</font>''',由奥地利物理学家埃尔温·薛定谔于1935年提出,但该想法起源于阿尔伯特·爱因斯坦。
+
</ref>
 
  −
 
  −
Schrödinger's cat is a thought experiment, sometimes described as a paradox, devised by Austrian physicist Erwin Schrödinger in 1935, though the idea originated from Albert Einstein.<ref name="Schrodinger1935"><br>
  −
薛定谔的猫是一个'''<font color="ff8000">思维实验thought experiment</font>''',有时被称为'''<font color="ff8000">悖论paradox</font>''',由奥地利物理学家埃尔温·薛定谔于1935年提出,尽管该想法起源于阿尔伯特·爱因斯坦。
  −
 
  −
{{cite journal
  −
 
  −
{{cite journal
  −
 
  −
{引用期刊
  −
 
  −
| authorlink=Erwin Schrödinger
  −
 
  −
| authorlink=Erwin Schrödinger
  −
 
  −
| authorlink 埃尔温·薛定谔
  −
 
  −
| first=Erwin| last=Schrödinger
  −
 
  −
| first=Erwin| last=Schrödinger
  −
 
  −
| first=Erwin| last=Schrödinger
  −
 
  −
| title=Die gegenwärtige Situation in der Quantenmechanik (The present situation in quantum mechanics)
  −
 
  −
| title=Die gegenwärtige Situation in der Quantenmechanik (The present situation in quantum mechanics)
  −
 
  −
量子力学的现状
  −
 
  −
| journal=[[Naturwissenschaften]]
  −
 
  −
| journal=Naturwissenschaften
  −
 
  −
| journal=Naturwissenschaften
  −
 
  −
| doi= 10.1007/BF01491891
  −
 
  −
| doi= 10.1007/BF01491891
  −
 
  −
10.1007 / BF01491891
  −
 
  −
| volume =23
  −
 
  −
| volume =23
  −
 
  −
第23卷
  −
 
  −
| issue= 48
  −
 
  −
| issue= 48
  −
 
  −
第48期
  −
 
  −
| pages= 807–812
  −
 
  −
| pages= 807–812
  −
 
  −
第807-812页
  −
 
  −
| bibcode=1935NW.....23..807S
     −
| bibcode=1935NW.....23..807S
+
薛定谔的猫是一个'''<font color="ff8000">思想实验thought experiment</font>''',有时被称为'''<font color="ff8000">悖论paradox</font>''',由奥地利物理学家埃尔温·薛定谔于1935年提出,但该想法起源于阿尔伯特·爱因斯坦<ref name="Schrodinger1935" />。
   −
| bibcode 1935NW... 23. . 807 s
     −
| date=November 1935}}
+
It illustrates what he saw as the problem of the [[Copenhagen interpretation]] of [[quantum mechanics]] applied to everyday objects. The scenario presents a hypothetical [[cat]] that may be simultaneously both alive and dead,<ref name="Moring"><nowiki>{{cite book</nowiki><br>
 
+
</ref>a state known as a [[quantum superposition]], as a result of being linked to a random [[Subatomic particle|subatomic]] event that may or may not occur.
| date=November 1935}}
  −
 
  −
日期: 1935年11月}
  −
 
  −
</ref> It illustrates what he saw as the problem of the [[Copenhagen interpretation]] of [[quantum mechanics]] applied to everyday objects. The scenario presents a hypothetical [[cat]] that may be simultaneously both alive and dead,<ref name="Moring">{{cite book<br>
  −
</ref>该实验表明了薛定谔认为的将'''<font color="ff8000">量子力学quantum mechanics</font>'''的哥本哈根诠释应用于日常物品所产生的问题,提出了一只可能同时活着且死去的猫。ref name"moring"{ cite book<br>
  −
  ——Solitude(讨论)该句意译
     −
</ref> It illustrates what he saw as the problem of the Copenhagen interpretation of quantum mechanics applied to everyday objects. The scenario presents a hypothetical cat that may be simultaneously both alive and dead,<ref name="Moring">{{cite book<br>
+
该实验表明了薛定谔认为的将'''<font color="ff8000">量子力学quantum mechanics</font>'''的哥本哈根诠释应用于日常物品所产生的问题,提出了一只可能同时活着且死去的猫<ref name="Moring" />。这种状态被称为量子叠加quantum superposition,是与可能发生也可能不发生的随机亚原子事件相联系导致的结果。<br>
它说明了他所看到的将'''<font color="ff8000">量子力学quantum mechanics</font>'''的哥本哈根诠释应用于日常物品所产生的问题。这个场景呈现了一只假想的猫,它可能同时活着和死去。ref name"moring"{ cite book<br>
   
   ——Solitude(讨论)该句意译
 
   ——Solitude(讨论)该句意译
  −
| last1  = Moring
  −
  −
| last1  = Moring
  −
  −
| 上午1点
  −
  −
| first1 = Gary
  −
  −
| first1 = Gary
  −
  −
首先,加里
  −
  −
| title  = The Complete Idiot's Guide to Theories of the Universe
  −
  −
| title  = The Complete Idiot's Guide to Theories of the Universe
  −
  −
白痴宇宙理论完全指南
  −
  −
| publisher = Penguin
  −
  −
| publisher = Penguin
  −
  −
企鹅出版社
  −
  −
| date  = 2001
  −
  −
| date  = 2001
  −
  −
2001年
  −
  −
| location =
  −
  −
| location =
  −
  −
| 位置
  −
  −
| pages  = 192–193
  −
  −
| pages  = 192–193
  −
  −
第192-193页
  −
  −
| language =
  −
  −
| language =
  −
  −
语言
  −
  −
| url    = https://books.google.com/?id=Y4EBCftoN_oC&pg=PA193&dq=%22schrodinger's+cat%22+%22alive+and+dead%22
  −
  −
| url    = https://books.google.com/?id=Y4EBCftoN_oC&pg=PA193&dq=%22schrodinger's+cat%22+%22alive+and+dead%22
  −
  −
Https://books.google.com/?id=y4ebcfton_oc&pg=pa193&dq=%22schrodinger’s+cat%22+%22alive+and+dead%22
  −
  −
| doi    =
  −
  −
| doi    =
  −
  −
  −
| id    =
  −
  −
| id    =
  −
  −
  −
| isbn  = 1440695725
  −
  −
| isbn  = 1440695725
  −
  −
1440695725
  −
  −
}}</ref><ref name="Gribbin">{{cite book
  −
  −
}}</ref><ref name="Gribbin">{{cite book
  −
  −
{} / ref name"gribbin"{ cite book
  −
  −
|last1      = Gribbin
  −
  −
|last1      = Gribbin
  −
  −
1 Gribbin
  −
  −
|first1      = John
  −
  −
|first1      = John
  −
  −
第一个约翰
  −
  −
|title      = In Search of Schrodinger's Cat: Quantum Physics And Reality
  −
  −
|title      = In Search of Schrodinger's Cat: Quantum Physics And Reality
  −
  −
寻找薛定谔的猫: 量子物理学与现实
  −
  −
|publisher  = Random House Publishing Group
  −
  −
|publisher  = Random House Publishing Group
  −
  −
出版商兰登书屋出版集团
  −
  −
|date        = 2011
  −
  −
|date        = 2011
  −
  −
日期2011年
  −
  −
|pages      = 234
  −
  −
|pages      = 234
  −
  −
234页
  −
  −
|url        = https://books.google.com/?id=IxOBm322_lIC&printsec=frontcover&dq=%22schrodinger's+cat%22+%22alive+and+dead%22
  −
  −
|url        = https://books.google.com/?id=IxOBm322_lIC&printsec=frontcover&dq=%22schrodinger's+cat%22+%22alive+and+dead%22
  −
  −
Https://books.google.com/?id=ixobm322_lic&printsec=frontcover&dq=%22schrodinger’s+cat%22+%22alive+and+dead%22
  −
  −
|isbn        = 978-0307790446
  −
  −
|isbn        = 978-0307790446
  −
  −
978-0307790446
  −
  −
|url-status    = live
  −
  −
|url-status    = live
  −
  −
状态直播
  −
  −
|archiveurl  = https://web.archive.org/web/20150517143009/https://books.google.com/books?id=IxOBm322_lIC&printsec=frontcover&dq=%22schrodinger's+cat%22+%22alive+and+dead%22
  −
  −
|archiveurl  = https://web.archive.org/web/20150517143009/https://books.google.com/books?id=IxOBm322_lIC&printsec=frontcover&dq=%22schrodinger's+cat%22+%22alive+and+dead%22
  −
  −
Https://web.archive.org/web/20150517143009/https://books.google.com/books?id=ixobm322_lic&printsec=frontcover&dq=%22schrodinger’s+cat%22+%22alive+and+dead%22
  −
  −
|archivedate = 2015-05-17
  −
  −
|archivedate = 2015-05-17
  −
  −
2015-05-17
  −
  −
}}</ref><ref name="Greenstein">{{cite book
  −
  −
}}</ref><ref name="Greenstein">{{cite book
  −
  −
{} / ref name"greenstein"{ cite book
  −
  −
|last1      = Greenstein
  −
  −
|last1      = Greenstein
  −
  −
| last 1 Greenstein
  −
  −
|first1      = George
  −
  −
|first1      = George
  −
  −
首先,乔治
  −
  −
|last2      = Zajonc
  −
  −
|last2      = Zajonc
  −
  −
2 Zajonc
  −
  −
|first2      = Arthur
  −
  −
|first2      = Arthur
  −
  −
首先,亚瑟
  −
  −
|title      = The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics
  −
  −
|title      = The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics
  −
  −
量子挑战: 关于量子力学基础的现代研究
  −
  −
|publisher  = Jones & Bartlett Learning
  −
  −
|publisher  = Jones & Bartlett Learning
  −
  −
出版商: Jones & Bartlett Learning
  −
  −
|date        = 2006
  −
  −
|date        = 2006
  −
  −
2006年
  −
  −
|pages      = 186
  −
  −
|pages      = 186
  −
  −
第186页
  −
  −
|url        = https://books.google.com/?id=5t0tm0FB1CsC&pg=PA186&dq=%22alive+and+dead%22
  −
  −
|url        = https://books.google.com/?id=5t0tm0FB1CsC&pg=PA186&dq=%22alive+and+dead%22
  −
  −
Https://books.google.com/?id=5t0tm0fb1csc&pg=pa186&dq=%22alive+and+dead%22
  −
  −
|isbn        = 076372470X
  −
  −
|isbn        = 076372470X
  −
  −
| isbn 076372470X
  −
  −
|url-status    = live
  −
  −
|url-status    = live
  −
  −
状态直播
  −
  −
|archiveurl  = https://web.archive.org/web/20150518232812/https://books.google.com/books?id=5t0tm0FB1CsC&pg=PA186&dq=%22alive+and+dead%22
  −
  −
|archiveurl  = https://web.archive.org/web/20150518232812/https://books.google.com/books?id=5t0tm0FB1CsC&pg=PA186&dq=%22alive+and+dead%22
  −
  −
Https://web.archive.org/web/20150518232812/https://books.google.com/books?id=5t0tm0fb1csc&pg=pa186&dq=%22alive+and+dead%22
  −
  −
|archivedate = 2015-05-18
  −
  −
|archivedate = 2015-05-18
  −
  −
2015-05-18
  −
  −
}}</ref><ref name="Tetlow">{{cite book
  −
  −
}}</ref><ref name="Tetlow">{{cite book
  −
  −
{} / ref name"tetlow"{ cite book
  −
  −
|last1      = Tetlow
  −
  −
|last1      = Tetlow
  −
  −
| last 1 Tetlow
  −
  −
|first1      = Philip
  −
  −
|first1      = Philip
  −
  −
首先,菲利普
  −
  −
|title      = Understanding Information and Computation: From Einstein to Web Science
  −
  −
|title      = Understanding Information and Computation: From Einstein to Web Science
  −
  −
理解信息和计算: 从爱因斯坦到网络科学
  −
  −
|publisher  = Gower Publishing, Ltd.
  −
  −
|publisher  = Gower Publishing, Ltd.
  −
  −
| 高尔出版社有限公司。
  −
  −
|date        = 2012
  −
  −
|date        = 2012
  −
  −
日期2012年
  −
  −
|pages      = 321
  −
  −
|pages      = 321
  −
  −
第321页
  −
  −
|url        = https://books.google.com/?id=Rk7O3EG0Xn4C&pg=PA321&dq=%22alive+and+dead%22
  −
  −
|url        = https://books.google.com/?id=Rk7O3EG0Xn4C&pg=PA321&dq=%22alive+and+dead%22
  −
  −
Https://books.google.com/?id=rk7o3eg0xn4c&pg=pa321&dq=%22alive+and+dead%22
  −
  −
|isbn        = 978-1409440406
  −
  −
|isbn        = 978-1409440406
  −
  −
978-1409440406
  −
  −
|url-status    = live
  −
  −
|url-status    = live
  −
  −
状态直播
  −
  −
|archiveurl  = https://web.archive.org/web/20150519001741/https://books.google.com/books?id=Rk7O3EG0Xn4C&pg=PA321&dq=%22alive+and+dead%22
  −
  −
|archiveurl  = https://web.archive.org/web/20150519001741/https://books.google.com/books?id=Rk7O3EG0Xn4C&pg=PA321&dq=%22alive+and+dead%22
  −
  −
| archiveurl  https://web.archive.org/web/20150519001741/https://books.google.com/books?id=rk7o3eg0xn4c&pg=pa321&dq=%22alive+and+dead%22
  −
  −
|archivedate = 2015-05-19
  −
  −
|archivedate = 2015-05-19
  −
  −
档案日期2015-05-19
  −
  −
}}</ref><ref name="Herbert">{{cite book
  −
  −
}}</ref><ref name="Herbert">{{cite book
  −
  −
{ / ref name"herbert { cite book
  −
  −
|last1      = Herbert
  −
  −
|last1      = Herbert
  −
  −
最后一个赫伯特
  −
  −
|first1      = Nick
  −
  −
|first1      = Nick
  −
  −
首先,尼克
  −
  −
|title      = Quantum Reality: Beyond the New Physics
  −
  −
|title      = Quantum Reality: Beyond the New Physics
  −
  −
| 题目: 量子实在: 超越新物理学
  −
  −
|publisher  = Knopf Doubleday Publishing Group
  −
  −
|publisher  = Knopf Doubleday Publishing Group
  −
  −
| 出版商 Knopf Doubleday 出版集团
  −
  −
|date        = 2011
  −
  −
|date        = 2011
  −
  −
日期2011年
  −
  −
|pages      = 150
  −
  −
|pages      = 150
  −
  −
第150页
  −
  −
|url        = https://books.google.com/?id=X9R6gJ3z9VEC&pg=PA150&dq=%22schrodinger's+cat%22+%22alive+and+dead%22
  −
  −
|url        = https://books.google.com/?id=X9R6gJ3z9VEC&pg=PA150&dq=%22schrodinger's+cat%22+%22alive+and+dead%22
  −
  −
Https://books.google.com/?id=x9r6gj3z9vec&pg=pa150&dq=%22schrodinger’s+cat%22+%22alive+and+dead%22
  −
  −
|isbn        = 978-0307806741
  −
  −
|isbn        = 978-0307806741
  −
  −
978-0307806741
  −
  −
|url-status    = live
  −
  −
|url-status    = live
  −
  −
状态直播
  −
  −
|archiveurl  = https://web.archive.org/web/20150518222449/https://books.google.com/books?id=X9R6gJ3z9VEC&pg=PA150&dq=%22schrodinger's+cat%22+%22alive+and+dead%22
  −
  −
|archiveurl  = https://web.archive.org/web/20150518222449/https://books.google.com/books?id=X9R6gJ3z9VEC&pg=PA150&dq=%22schrodinger's+cat%22+%22alive+and+dead%22
  −
  −
| archiveurl  https://web.archive.org/web/20150518222449/https://books.google.com/books?id=x9r6gj3z9vec&pg=pa150&dq=%22schrodinger’s+cat%22+%22alive+and+dead%22
  −
  −
|archivedate = 2015-05-18
  −
  −
|archivedate = 2015-05-18
  −
  −
档案日期2015-05-18
  −
  −
}}</ref><ref name="Charap">{{cite book
  −
  −
}}</ref><ref name="Charap">{{cite book
  −
  −
{} / ref name"charap"{ cite book
  −
  −
|last1      = Charap
  −
  −
|last1      = Charap
  −
  −
1 Charap
  −
  −
|first1      = John M.
  −
  −
|first1      = John M.
  −
  −
第一名: 约翰 · m。
  −
  −
|title      = Explaining The Universe
  −
  −
|title      = Explaining The Universe
  −
  −
解释宇宙
  −
  −
|publisher  = Universities Press
  −
  −
|publisher  = Universities Press
  −
  −
出版商: 大学出版社
  −
  −
|date        = 2002
  −
  −
|date        = 2002
  −
  −
2002年
  −
  −
|pages      = [https://archive.org/details/explaininguniver00char/page/99 99]
  −
  −
|pages      = [https://archive.org/details/explaininguniver00char/page/99 99]
  −
  −
Https://archive.org/details/explaininguniver00char/page/9999
  −
  −
|url        = https://archive.org/details/explaininguniver00char
  −
  −
|url        = https://archive.org/details/explaininguniver00char
  −
  −
Https://archive.org/details/explaininguniver00char
  −
  −
|url-access  = registration
  −
  −
|url-access  = registration
  −
  −
访问注册
  −
  −
|quote      = schrodinger's cat alive and dead.
  −
  −
|quote      = schrodinger's cat alive and dead.
  −
  −
引用薛定谔的猫活着和死了。
  −
  −
|isbn        = 8173714673
  −
  −
|isbn        = 8173714673
  −
  −
8173714673
  −
  −
}}</ref><ref name="Polkinghorne">{{cite book
  −
  −
}}</ref><ref name="Polkinghorne">{{cite book
  −
  −
{} / ref name"polkinghorne"{ cite book
  −
  −
|last1      = Polkinghorne
  −
  −
|last1      = Polkinghorne
  −
  −
最后1个 Polkinghorne
  −
  −
|first1      = J. C.
  −
  −
|first1      = J. C.
  −
  −
首先是 j. c。
  −
  −
|title      = The Quantum World
  −
  −
|title      = The Quantum World
  −
  −
标题: 量子世界
  −
  −
|publisher  = [[Princeton University Press]]
  −
  −
|publisher  = Princeton University Press
  −
  −
出版商普林斯顿大学出版社
  −
  −
|date        = 1985
  −
  −
|date        = 1985
  −
  −
1985年
  −
  −
|pages      = 67
  −
  −
|pages      = 67
  −
  −
第67页
  −
  −
|url        = https://books.google.com/?id=lp4JPYnLrtEC&pg=PA67&dq=%22schrodinger's+cat%22+%22alive+dead
  −
  −
|url        = https://books.google.com/?id=lp4JPYnLrtEC&pg=PA67&dq=%22schrodinger's+cat%22+%22alive+dead
  −
  −
Https://books.google.com/?id=lp4jpynlrtec&pg=pa67&dq=%22schrodinger’s+cat%22+%22alive+dead
  −
  −
|isbn        = 0691023883
  −
  −
|isbn        = 0691023883
  −
  −
0691023883
  −
  −
|url-status    = live
  −
  −
|url-status    = live
  −
  −
状态直播
  −
  −
|archiveurl  = https://web.archive.org/web/20150519001623/https://books.google.com/books?id=lp4JPYnLrtEC&pg=PA67&dq=%22schrodinger's+cat%22+%22alive+dead
  −
  −
|archiveurl  = https://web.archive.org/web/20150519001623/https://books.google.com/books?id=lp4JPYnLrtEC&pg=PA67&dq=%22schrodinger's+cat%22+%22alive+dead
  −
  −
| archiveurl  https://web.archive.org/web/20150519001623/https://books.google.com/books?id=lp4jpynlrtec&pg=pa67&dq=%22schrodinger’s+cat%22+%22alive+dead
  −
  −
|archivedate = 2015-05-19
  −
  −
|archivedate = 2015-05-19
  −
  −
档案日期2015-05-19
  −
  −
}}</ref> a state known as a [[quantum superposition]], as a result of being linked to a random [[Subatomic particle|subatomic]] event that may or may not occur.
  −
  −
<nowiki>}}</nowiki><nowiki></ref></nowiki> a state known as a '''<font color="#ff8000">quantum superposition</font>''', as a result of being linked to a random subatomic event that may or may not occur.<br>
  −
这种状态被称为量子叠加quantum superposition,是与可能发生也可能不发生的随机亚原子事件相联系导致的结果。
  −
         
The thought experiment is also often featured in theoretical discussions of the [[interpretations of quantum mechanics]], particularly in situations involving the [[measurement problem]]. Schrödinger coined the term ''Verschränkung'' ([[Quantum entanglement|entanglement]]) in the course of developing the thought experiment.{{Quantum mechanics|cTopic=Experiments}}
 
The thought experiment is also often featured in theoretical discussions of the [[interpretations of quantum mechanics]], particularly in situations involving the [[measurement problem]]. Schrödinger coined the term ''Verschränkung'' ([[Quantum entanglement|entanglement]]) in the course of developing the thought experiment.{{Quantum mechanics|cTopic=Experiments}}
  −
The thought experiment is also often featured in theoretical discussions of the interpretations of quantum mechanics, particularly in situations involving the measurement problem. Schrödinger coined the term Verschränkung (entanglement) in the course of developing the thought experiment.
      
该思想实验也经常出现在对量子力学诠释理论的探讨中,特别是在涉及测量问题的情况下。薛定谔在提出思想实验的过程中创造了“量子纠缠”这个术语。
 
该思想实验也经常出现在对量子力学诠释理论的探讨中,特别是在涉及测量问题的情况下。薛定谔在提出思想实验的过程中创造了“量子纠缠”这个术语。
第628行: 第43行:     
[[File:Schroedinger cat.jpg|thumb|left|A life-size—and moveable—cat figure in the garden of Huttenstrasse 9, Zurich, where Erwin Schrödinger lived 1921–1926. A visitor to the house cannot know in advance where the cat will be.<ref>{{cite web |last1=Suarez |first1=Antoine |title=The limits of quantum superposition: Should "Schrödinger's cat" and "Wigner's friend" be considered "miracle" narratives? |url=https://www.researchgate.net/publication/334031988 |website=ResearchGate |accessdate=27 February 2020 |page=3 |date=2019}}</ref>|链接=Special:FilePath/Schroedinger_cat.jpg]]
 
[[File:Schroedinger cat.jpg|thumb|left|A life-size—and moveable—cat figure in the garden of Huttenstrasse 9, Zurich, where Erwin Schrödinger lived 1921–1926. A visitor to the house cannot know in advance where the cat will be.<ref>{{cite web |last1=Suarez |first1=Antoine |title=The limits of quantum superposition: Should "Schrödinger's cat" and "Wigner's friend" be considered "miracle" narratives? |url=https://www.researchgate.net/publication/334031988 |website=ResearchGate |accessdate=27 February 2020 |page=3 |date=2019}}</ref>|链接=Special:FilePath/Schroedinger_cat.jpg]]
埃尔温·薛定谔于1921年-1926年居住在苏黎世的胡特大街 (Huttenstrasse) 9号,屋子花园里有一座真实大小、可移动的猫形雕像,参观房子的人不会提前知道雕像的位置。
   
A life-size—and moveable—cat figure in the garden of Huttenstrasse 9, Zurich, where Erwin Schrödinger lived 1921–1926. A visitor to the house cannot know in advance where the cat will be.
 
A life-size—and moveable—cat figure in the garden of Huttenstrasse 9, Zurich, where Erwin Schrödinger lived 1921–1926. A visitor to the house cannot know in advance where the cat will be.
    
埃尔温·薛定谔于1921年-1926年居住在苏黎世的胡特大街 (Huttenstrasse) 9号,屋子花园里有一座真实大小、可移动的猫形雕像,参观房子的人不会提前知道雕像的位置。
 
埃尔温·薛定谔于1921年-1926年居住在苏黎世的胡特大街 (Huttenstrasse) 9号,屋子花园里有一座真实大小、可移动的猫形雕像,参观房子的人不会提前知道雕像的位置。
   −
Schrödinger intended his thought experiment as a discussion of the [[EPR paradox|EPR article]]—named after its authors [[Albert Einstein|Einstein]], [[Boris Podolsky|Podolsky]], and [[Nathan Rosen|Rosen]]—in 1935.<ref>[http://prola.aps.org/abstract/PR/v47/i10/p777_1 Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?] {{webarchive|url=https://web.archive.org/web/20060208145129/http://prola.aps.org/abstract/PR/v47/i10/p777_1 |date=2006-02-08 }} A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935)</ref> The EPR article highlighted the counterintuitive nature of [[quantum superposition]]s, in which a quantum system such as an [[atom]] or [[photon]] can exist as a combination of multiple states corresponding to different possible outcomes.
+
Schrödinger intended his thought experiment as a discussion of the [[EPR paradox|EPR article]]—named after its authors [[Albert Einstein|Einstein]], [[Boris Podolsky|Podolsky]], and [[Nathan Rosen|Rosen]]—in 1935.<ref name=":0">[http://prola.aps.org/abstract/PR/v47/i10/p777_1 Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?] {{webarchive|url=https://web.archive.org/web/20060208145129/http://prola.aps.org/abstract/PR/v47/i10/p777_1 |date=2006-02-08 }} A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935)</ref> The EPR article highlighted the counterintuitive nature of [[quantum superposition]]s, in which a quantum system such as an [[atom]] or [[photon]] can exist as a combination of multiple states corresponding to different possible outcomes.
 
  −
Schrödinger intended his thought experiment as a discussion of the EPR article—named after its authors Einstein, Podolsky, and Rosen—in 1935. The EPR article highlighted the counterintuitive nature of quantum superpositions, in which a quantum system such as an atom or photon can exist as a combination of multiple states corresponding to different possible outcomes.
  −
 
  −
1935年,薛定谔本来想将该思想实验作为对'''<font color="#ff8000">EPR佯谬</font>'''论文(以其作者爱因斯坦、波多尔斯基和罗森英文首字母命名)的讨论。EPR论文强调了量子叠加的反直觉性,在量子叠加中,一个量子系统,比如原子或者光子,可以处于多个状态,对应不同的结果。
  −
 
      +
1935年,薛定谔本来想将该思想实验作为对'''<font color="#ff8000">EPR佯谬</font>'''论文(以其作者爱因斯坦、波多尔斯基和罗森英文首字母命名)的讨论<ref name=":0" /> 。EPR论文强调了量子叠加的反直觉性,在量子叠加中,一个量子系统,比如原子或者光子,可以处于多个状态,对应不同的结果。
    
The prevailing theory, called the [[Copenhagen interpretation]], says that a quantum system remains in superposition until it interacts with, or is observed by the external world. When this happens, the superposition collapses into one or another of the possible definite states. The EPR experiment shows that a system with multiple particles separated by large distances can be in such a superposition. Schrödinger and [[Albert Einstein|Einstein]] exchanged letters about [[EPR paradox|Einstein's EPR article]], in the course of which Einstein pointed out that the  state of an [[Instability|unstable]] keg of [[gunpowder]] will, after a while, contain a superposition of both exploded and unexploded states.
 
The prevailing theory, called the [[Copenhagen interpretation]], says that a quantum system remains in superposition until it interacts with, or is observed by the external world. When this happens, the superposition collapses into one or another of the possible definite states. The EPR experiment shows that a system with multiple particles separated by large distances can be in such a superposition. Schrödinger and [[Albert Einstein|Einstein]] exchanged letters about [[EPR paradox|Einstein's EPR article]], in the course of which Einstein pointed out that the  state of an [[Instability|unstable]] keg of [[gunpowder]] will, after a while, contain a superposition of both exploded and unexploded states.
  −
The prevailing theory, called the Copenhagen interpretation, says that a quantum system remains in superposition until it interacts with, or is observed by the external world. When this happens, the superposition collapses into one or another of the possible definite states. The EPR experiment shows that a system with multiple particles separated by large distances can be in such a superposition. Schrödinger and Einstein exchanged letters about Einstein's EPR article, in the course of which Einstein pointed out that the  state of an unstable keg of gunpowder will, after a while, contain a superposition of both exploded and unexploded states.
      
当时的主流理论是哥本哈根诠释,它认为一个量子系统在与外部世界相互作用或被外部世界观察到之前,一直处于叠加状态。这时,叠加态会坍缩成一种或另一种定态。EPR实验表明,包含多个相距较远的粒子的系统可以处于这种叠加状态。薛定谔和爱因斯坦就后者的EPR佯谬论文通信,在信中,爱因斯坦指出,一个不稳定的火药桶会在一段时间后包含爆炸状态和未爆炸状态的叠加。
 
当时的主流理论是哥本哈根诠释,它认为一个量子系统在与外部世界相互作用或被外部世界观察到之前,一直处于叠加状态。这时,叠加态会坍缩成一种或另一种定态。EPR实验表明,包含多个相距较远的粒子的系统可以处于这种叠加状态。薛定谔和爱因斯坦就后者的EPR佯谬论文通信,在信中,爱因斯坦指出,一个不稳定的火药桶会在一段时间后包含爆炸状态和未爆炸状态的叠加。
第649行: 第57行:  
To further illustrate, Schrödinger described how one could, in principle, create a superposition in a large-scale system by making it dependent on a quantum particle that was in a superposition.  He proposed a scenario with a cat in a locked steel chamber, wherein the cat's life or death depended on the state of a [[Radioactive decay|radioactive]] atom, whether it had decayed and emitted radiation or not. According to Schrödinger, the Copenhagen interpretation implies that ''the cat remains both alive and dead'' until the state has been observed. Schrödinger did not wish to promote the idea of dead-and-alive cats as a serious possibility; on the contrary, he intended the example to illustrate the absurdity of the existing view of quantum mechanics.<ref name="Schrodinger1935"/>
 
To further illustrate, Schrödinger described how one could, in principle, create a superposition in a large-scale system by making it dependent on a quantum particle that was in a superposition.  He proposed a scenario with a cat in a locked steel chamber, wherein the cat's life or death depended on the state of a [[Radioactive decay|radioactive]] atom, whether it had decayed and emitted radiation or not. According to Schrödinger, the Copenhagen interpretation implies that ''the cat remains both alive and dead'' until the state has been observed. Schrödinger did not wish to promote the idea of dead-and-alive cats as a serious possibility; on the contrary, he intended the example to illustrate the absurdity of the existing view of quantum mechanics.<ref name="Schrodinger1935"/>
   −
To further illustrate, Schrödinger described how one could, in principle, create a superposition in a large-scale system by making it dependent on a quantum particle that was in a superposition.  He proposed a scenario with a cat in a locked steel chamber, wherein the cat's life or death depended on the state of a radioactive atom, whether it had decayed and emitted radiation or not. According to Schrödinger, the Copenhagen interpretation implies that the cat remains both alive and dead until the state has been observed. Schrödinger did not wish to promote the idea of dead-and-alive cats as a serious possibility; on the contrary, he intended the example to illustrate the absurdity of the existing view of quantum mechanics.
+
为了进一步说明,薛定谔描述了一种原则上可以在大型系统中创建叠加态的办法,即让该系统依赖于处于叠加态的量子粒子。他提出在一个密闭的钢制房间中放一只猫,猫的生死取决于放射性原子的状态,即原子是否衰变释放出放射性。薛定谔认为,哥本哈根诠释意味着这只猫在被观察到之前,既活着也死了。薛定谔并不认可猫既死也或是一种严谨的可能性,相反,他希望用这个例子说明量子力学<ref name="Schrodinger1935" />现有观点的荒谬之处。
 
  −
为了进一步说明,薛定谔描述了一种原则上可以在大型系统中创建叠加态的办法,即让该系统依赖于处于叠加态的量子粒子。他提出在一个密闭的钢制房间中放一只猫,猫的生死取决于放射性原子的状态,即原子是否衰变释放出放射性。薛定谔认为,哥本哈根诠释意味着这只猫在被观察到之前,既活着也死了。薛定谔并不认可猫既死也或是一种严谨的可能性,相反,他希望用这个例子说明量子力学现有观点的荒谬之处。
   
  ——Solitude(讨论)该句意译  
 
  ——Solitude(讨论)该句意译  
    +
However, since Schrödinger's time, other [[interpretations of quantum mechanics|interpretations of the mathematics of quantum mechanics]] have been advanced by physicists, some of which regard the "alive and dead" cat superposition as quite real.<ref name="Polkinghorne">{{cite book
    +
}}</ref><ref name="Tetlow">{{cite book
   −
However, since Schrödinger's time, other [[interpretations of quantum mechanics|interpretations of the mathematics of quantum mechanics]] have been advanced by physicists, some of which regard the "alive and dead" cat superposition as quite real.<ref name="Polkinghorne" /><ref name="Tetlow" />    Intended as a critique of the Copenhagen interpretation (the prevailing orthodoxy in 1935), the Schrödinger's cat thought experiment remains a defining [[Touchstone (metaphor)|touchstone]] for modern interpretations of quantum mechanics. Physicists often use the way each interpretation deals with Schrödinger's cat as a way of illustrating and comparing the particular features, strengths, and weaknesses of each interpretation.
+
}}</ref>    Intended as a critique of the Copenhagen interpretation (the prevailing orthodoxy in 1935), the Schrödinger's cat thought experiment remains a defining [[Touchstone (metaphor)|touchstone]] for modern interpretations of quantum mechanics. Physicists often use the way each interpretation deals with Schrödinger's cat as a way of illustrating and comparing the particular features, strengths, and weaknesses of each interpretation.
   −
However, since Schrödinger's time, other interpretations of the mathematics of quantum mechanics have been advanced by physicists, some of which regard the "alive and dead" cat superposition as quite real.    Intended as a critique of the Copenhagen interpretation (the prevailing orthodoxy in 1935), the Schrödinger's cat thought experiment remains a defining touchstone for modern interpretations of quantum mechanics. Physicists often use the way each interpretation deals with Schrödinger's cat as a way of illustrating and comparing the particular features, strengths, and weaknesses of each interpretation.
+
但是,自从薛定谔时代以来,物理学家提出了诸多其他量子力学的数学解释,其中一些解释认为 “既生又死”的猫叠加态非常真实<ref name="Polkinghorne" /><ref name="Tetlow" />  。薛定谔的猫思想实验意在批判哥本哈根诠释(1935年的主流正统学说),至今仍是各种现代量子力学诠释的试金石,具有决定性意义。物理学家经常用各种诠释解释薛定谔的猫的方式来说明和比较各种诠释的特点、优点和缺点。
   −
但是,自从薛定谔时代以来,物理学家提出了诸多其他量子力学的数学解释,其中一些解释认为 “既生又死”的猫叠加态非常真实。薛定谔的猫思想实验意在批判哥本哈根诠释(1935年的主流正统学说),至今仍是各种现代量子力学诠释的试金石,具有决定性意义。物理学家经常用各种诠释解释薛定谔的猫的方式来说明和比较各种诠释的特点、优点和缺点。
        第668行: 第75行:  
思想实验
 
思想实验
   −
Schrödinger wrote:<ref name="Schrodinger1935" /><ref>{{cite journal|last1=Trimmer|first1=John D.|title=The Present Situation in Quantum Mechanics: A Translation of Schrödinger's "Cat Paradox" Paper|journal=Proceedings of the American Philosophical Society|date=1980|volume=124|issue=5|pages=323–338|jstor=986572}} Reproduced with some inaccuracies here:
+
Schrödinger wrote:<ref name="Schrodinger1935" /><ref name=":1">{{cite journal|last1=Trimmer|first1=John D.|title=The Present Situation in Quantum Mechanics: A Translation of Schrödinger's "Cat Paradox" Paper|journal=Proceedings of the American Philosophical Society|date=1980|volume=124|issue=5|pages=323–338|jstor=986572}} Reproduced with some inaccuracies here:
   −
Schrödinger wrote:<ref> Reproduced with some inaccuracies here:
+
Schrödinger wrote:<nowiki><ref> Reproduced with some inaccuracies here:</nowiki>
    
薛定谔写道: 引用这里的一些不准确之处:
 
薛定谔写道: 引用这里的一些不准确之处:
第678行: 第85行:  
One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along with the following device (which must be secured against direct interference by the cat): in a Geiger counter, there is a tiny bit of radioactive substance, so small, that perhaps in the course of the hour one of the atoms decays, but also, with equal probability, perhaps none; if it happens, the counter tube discharges and through a relay releases a hammer that shatters a small flask of hydrocyanic acid. If one has left this entire system to itself for an hour, one would say that the cat still lives if meanwhile no atom has decayed. The first atomic decay would have poisoned it. The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed or smeared out in equal parts.
 
One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along with the following device (which must be secured against direct interference by the cat): in a Geiger counter, there is a tiny bit of radioactive substance, so small, that perhaps in the course of the hour one of the atoms decays, but also, with equal probability, perhaps none; if it happens, the counter tube discharges and through a relay releases a hammer that shatters a small flask of hydrocyanic acid. If one has left this entire system to itself for an hour, one would say that the cat still lives if meanwhile no atom has decayed. The first atomic decay would have poisoned it. The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed or smeared out in equal parts.
   −
薛定谔写道:
+
薛定谔写道:<ref name="Schrodinger1935" /><ref name=":1" />
    
人们甚至可以提出相当荒谬的实验。把一只猫和盖革计数器,少量放射物质(设备必须不会干涉猫)一起关在钢制房间内。放射物质含量极少,也许一个小时原子就会衰变,但也有可能不衰变;如果原子衰变,计数管就会放电,并通过继电器释放出一个锤子,击碎装有氢氰酸的瓶子。如果我们把这整个系统单独放一小时,如果在此期间没有原子衰变,猫就还活着。第一次原子衰变会将它毒死。整个系统的普西函数将通过将活猫和死猫(原谅这个表达)混合或均分在相同部分来表达这一点。
 
人们甚至可以提出相当荒谬的实验。把一只猫和盖革计数器,少量放射物质(设备必须不会干涉猫)一起关在钢制房间内。放射物质含量极少,也许一个小时原子就会衰变,但也有可能不衰变;如果原子衰变,计数管就会放电,并通过继电器释放出一个锤子,击碎装有氢氰酸的瓶子。如果我们把这整个系统单独放一小时,如果在此期间没有原子衰变,猫就还活着。第一次原子衰变会将它毒死。整个系统的普西函数将通过将活猫和死猫(原谅这个表达)混合或均分在相同部分来表达这一点。
第709行: 第116行:     
Schrödinger's famous [[thought experiment]] poses the question, "''when'' does a quantum system stop existing as a superposition of states and become one or the other?"  (More technically, when does the actual quantum state stop being a non-trivial [[linear combination]] of states, each of which resembles different classical states, and instead begin to have a unique classical description?) If the cat survives, it remembers only being alive. But explanations of the EPR experiments that are consistent with standard microscopic quantum mechanics require that macroscopic objects, such as cats and notebooks, do not always have unique classical descriptions. The thought experiment illustrates this apparent paradox. Our intuition says that no observer can be in a mixture of states—yet the cat, it seems from the thought experiment, can be such a mixture. Is the cat required to be an observer, or does its existence in a single well-defined classical state require another external observer? Each alternative seemed absurd to Einstein, who was impressed by the ability of the thought experiment to highlight these issues. In a letter to Schrödinger dated 1950, he wrote:
 
Schrödinger's famous [[thought experiment]] poses the question, "''when'' does a quantum system stop existing as a superposition of states and become one or the other?"  (More technically, when does the actual quantum state stop being a non-trivial [[linear combination]] of states, each of which resembles different classical states, and instead begin to have a unique classical description?) If the cat survives, it remembers only being alive. But explanations of the EPR experiments that are consistent with standard microscopic quantum mechanics require that macroscopic objects, such as cats and notebooks, do not always have unique classical descriptions. The thought experiment illustrates this apparent paradox. Our intuition says that no observer can be in a mixture of states—yet the cat, it seems from the thought experiment, can be such a mixture. Is the cat required to be an observer, or does its existence in a single well-defined classical state require another external observer? Each alternative seemed absurd to Einstein, who was impressed by the ability of the thought experiment to highlight these issues. In a letter to Schrödinger dated 1950, he wrote:
  −
Schrödinger's famous thought experiment poses the question, "when does a quantum system stop existing as a superposition of states and become one or the other?"  (More technically, when does the actual quantum state stop being a non-trivial linear combination of states, each of which resembles different classical states, and instead begin to have a unique classical description?) If the cat survives, it remembers only being alive. But explanations of the EPR experiments that are consistent with standard microscopic quantum mechanics require that macroscopic objects, such as cats and notebooks, do not always have unique classical descriptions. The thought experiment illustrates this apparent paradox. Our intuition says that no observer can be in a mixture of states—yet the cat, it seems from the thought experiment, can be such a mixture. Is the cat required to be an observer, or does its existence in a single well-defined classical state require another external observer? Each alternative seemed absurd to Einstein, who was impressed by the ability of the thought experiment to highlight these issues. In a letter to Schrödinger dated 1950, he wrote:
      
薛定谔著名的思想实验提出了一个问题:“量子系统何时会脱离叠加态转而坍缩为叠加态的其中一种状态?”(更严格地说,从何时起,实际的量子态不再是多个经典态的非平凡线性组合,而是开始有一个唯一的经典描述?)如果猫还活着,它只记得活着的状态。但是EPR实验的解释与标准的微观量子力学都要求猫和笔记本之类的宏观物体并不总是有唯一的经典描述。薛定谔的思想实验说明了这一显而易见的悖论。直觉告诉我们,没有观察者可以处于多种状态的混合,然而上述思想实验却表明,猫可以处于既生又死的混合态。猫是否需要成为观察者,或者需要另外一个外部观察者使得猫能够存在一个定义明确的经典状态?爱因斯坦认为每一种选择都很荒谬,猫的思维实验极大地突出了这些问题,令他印象深刻。在1950年写给薛定谔的一封信中,他写道:
 
薛定谔著名的思想实验提出了一个问题:“量子系统何时会脱离叠加态转而坍缩为叠加态的其中一种状态?”(更严格地说,从何时起,实际的量子态不再是多个经典态的非平凡线性组合,而是开始有一个唯一的经典描述?)如果猫还活着,它只记得活着的状态。但是EPR实验的解释与标准的微观量子力学都要求猫和笔记本之类的宏观物体并不总是有唯一的经典描述。薛定谔的思想实验说明了这一显而易见的悖论。直觉告诉我们,没有观察者可以处于多种状态的混合,然而上述思想实验却表明,猫可以处于既生又死的混合态。猫是否需要成为观察者,或者需要另外一个外部观察者使得猫能够存在一个定义明确的经典状态?爱因斯坦认为每一种选择都很荒谬,猫的思维实验极大地突出了这些问题,令他印象深刻。在1950年写给薛定谔的一封信中,他写道:
第719行: 第124行:     
除了劳厄之外,您是现在仅存的物理学家,劳尔认为只有诚实的人才能绕开对现实的假设。他们中的大多数人根本不知道他们在玩什么样的冒险游戏——现实是独立于实验的。但是,你的系统——放射性原子+放大器+火药+盒子里的猫优雅地驳斥了他们的诠释,在这个系统里,普西函数既包含活着的猫,也包含被炸成碎片的猫。没有人真的怀疑猫的存在与否与观察行为无关。<br>
 
除了劳厄之外,您是现在仅存的物理学家,劳尔认为只有诚实的人才能绕开对现实的假设。他们中的大多数人根本不知道他们在玩什么样的冒险游戏——现实是独立于实验的。但是,你的系统——放射性原子+放大器+火药+盒子里的猫优雅地驳斥了他们的诠释,在这个系统里,普西函数既包含活着的猫,也包含被炸成碎片的猫。没有人真的怀疑猫的存在与否与观察行为无关。<br>
  −
Note that the charge of gunpowder is not mentioned in Schrödinger's setup, which uses a Geiger counter as an amplifier and hydrocyanic poison instead of gunpowder. The gunpowder had been mentioned in Einstein's original suggestion to Schrödinger 15 years before, and Einstein carried it forward to the present discussion.
      
Note that the charge of gunpowder is not mentioned in Schrödinger's setup, which uses a Geiger counter as an amplifier and hydrocyanic poison instead of gunpowder. The gunpowder had been mentioned in Einstein's original suggestion to Schrödinger 15 years before, and Einstein carried it forward to the present discussion.
 
Note that the charge of gunpowder is not mentioned in Schrödinger's setup, which uses a Geiger counter as an amplifier and hydrocyanic poison instead of gunpowder. The gunpowder had been mentioned in Einstein's original suggestion to Schrödinger 15 years before, and Einstein carried it forward to the present discussion.
第732行: 第135行:     
Since Schrödinger's time, other interpretations of quantum mechanics have been proposed that give different answers to the questions posed by Schrödinger's cat of how long superpositions last and when (or ''whether'') they collapse.
 
Since Schrödinger's time, other interpretations of quantum mechanics have been proposed that give different answers to the questions posed by Schrödinger's cat of how long superpositions last and when (or ''whether'') they collapse.
  −
Since Schrödinger's time, other interpretations of quantum mechanics have been proposed that give different answers to the questions posed by Schrödinger's cat of how long superpositions last and when (or whether) they collapse.
      
自薛定谔时代以来,人们提出了许多其他的量子力学诠释,针对薛定谔的猫提出的叠加态持续多久以及他们何时(或是否)坍缩,这些诠释给出了不同的答案。
 
自薛定谔时代以来,人们提出了许多其他的量子力学诠释,针对薛定谔的猫提出的叠加态持续多久以及他们何时(或是否)坍缩,这些诠释给出了不同的答案。
第754行: 第155行:  
A commonly held interpretation of quantum mechanics is the Copenhagen interpretation.<ref name="Wimmel1992">{{cite book|first=Hermann|last=Wimmel|title=Quantum physics & observed reality: a critical interpretation of quantum mechanics|url=https://books.google.com/?id=-4sJ_fgyZJEC&pg=PA2|accessdate=9 May 2011|year=1992|publisher=World Scientific|isbn=978-981-02-1010-6|page=2|url-status=live|archiveurl=https://web.archive.org/web/20130520185205/http://books.google.com/books?id=-4sJ_fgyZJEC&pg=PA2|archivedate=20 May 2013}}</ref>  In the Copenhagen interpretation, a system stops being a superposition of states and becomes either one or the other when an observation takes place. This thought experiment makes apparent the fact that the nature of [[Measurement in quantum mechanics|measurement]], or observation, is not well-defined in this interpretation. The experiment can be interpreted to mean that while the box is closed, the system simultaneously exists in a superposition of the states "decayed nucleus/dead cat" and "undecayed nucleus/living cat", and that only when the box is opened and an observation performed does the [[wave function]] collapse into one of the two states.
 
A commonly held interpretation of quantum mechanics is the Copenhagen interpretation.<ref name="Wimmel1992">{{cite book|first=Hermann|last=Wimmel|title=Quantum physics & observed reality: a critical interpretation of quantum mechanics|url=https://books.google.com/?id=-4sJ_fgyZJEC&pg=PA2|accessdate=9 May 2011|year=1992|publisher=World Scientific|isbn=978-981-02-1010-6|page=2|url-status=live|archiveurl=https://web.archive.org/web/20130520185205/http://books.google.com/books?id=-4sJ_fgyZJEC&pg=PA2|archivedate=20 May 2013}}</ref>  In the Copenhagen interpretation, a system stops being a superposition of states and becomes either one or the other when an observation takes place. This thought experiment makes apparent the fact that the nature of [[Measurement in quantum mechanics|measurement]], or observation, is not well-defined in this interpretation. The experiment can be interpreted to mean that while the box is closed, the system simultaneously exists in a superposition of the states "decayed nucleus/dead cat" and "undecayed nucleus/living cat", and that only when the box is opened and an observation performed does the [[wave function]] collapse into one of the two states.
   −
A commonly held interpretation of quantum mechanics is the Copenhagen interpretation.  In the Copenhagen interpretation, a system stops being a superposition of states and becomes either one or the other when an observation takes place. This thought experiment makes apparent the fact that the nature of measurement, or observation, is not well-defined in this interpretation. The experiment can be interpreted to mean that while the box is closed, the system simultaneously exists in a superposition of the states "decayed nucleus/dead cat" and "undecayed nucleus/living cat", and that only when the box is opened and an observation performed does the wave function collapse into one of the two states.
+
量子力学的主流诠释之一是哥本哈根诠释<ref name="Wimmel1992" />。该诠释认为,一个系统在观察时将不再处于叠加态,而是坍缩为叠加态中的任意一种状态。薛定谔的思维实验清楚地表明,哥本哈根诠释没有明确定义测量和观察的本质。实验可以解释为,盒子关闭时,系统处于“衰变的原子核/死猫”和“未衰变的原子核/活猫”叠加态中,只有打开盒子进行观察时,波函数才会坍缩成这两种状态之一。
 
  −
量子力学的主流诠释之一是哥本哈根诠释。该诠释认为,一个系统在观察时将不再处于叠加态,而是坍缩为叠加态中的任意一种状态。薛定谔的思维实验清楚地表明,哥本哈根诠释没有明确定义测量和观察的本质。实验可以解释为,盒子关闭时,系统处于“衰变的原子核/死猫”和“未衰变的原子核/活猫”叠加态中,只有打开盒子进行观察时,波函数才会坍缩成这两种状态之一。
      
However, one of the main scientists associated with the Copenhagen interpretation, [[Niels Bohr]], never had in mind the observer-induced collapse of the wave function, as he did not regard the wave function as physically real, but a statistical tool; thus, Schrödinger's cat did not pose any riddle to him. The cat would be either dead or alive long before the box is opened by a conscious [[Observer (quantum physics)|observer]].<ref name='Faye2008'>{{cite web | url = http://plato.stanford.edu/entries/qm-copenhagen/ | title = Copenhagen Interpretation of Quantum Mechanics | accessdate = 2010-09-19 | last = Faye | first = J | date = 2008-01-24 | encyclopedia = [[Stanford Encyclopedia of Philosophy]] | publisher = The Metaphysics Research Lab Center for the Study of Language and Information, [[Stanford University]]}}</ref> Analysis of an actual experiment found that measurement alone (for example by a Geiger counter) is sufficient to collapse a quantum wave function before there is any conscious observation of the measurement,<ref name='Carpenter2006'>{{cite journal | title = The death of Schroedinger's cat and of consciousness-based wave-function collapse | journal = [[Annales de la Fondation Louis de Broglie]] | year = 2006 | author = Carpenter RHS, Anderson AJ | volume = 31 | issue = 1 | pages = 45–52| id = | url = http://www.ensmp.fr/aflb/AFLB-311/aflb311m387.pdf  | accessdate = 2010-09-10 |archiveurl = https://web.archive.org/web/20061130173850/http://www.ensmp.fr/aflb/AFLB-311/aflb311m387.pdf |archivedate = 2006-11-30}}</ref> although the validity of their design is disputed.<ref name='Okon2006'>{{cite journal | title = How to Back up or Refute Quantum Theories of Consciousness | journal = Mind and Matter | year = 2016 | author = Okón E, Sebastián MA | volume = 14 | issue = 1 | pages = 25–49}}</ref> (The view that the "observation" is taken when a particle from the nucleus hits the detector can be developed into [[objective collapse theories]]. The thought experiment requires an "unconscious observation" by the detector in order for waveform collapse to occur. In contrast, the [[many worlds]] approach denies that collapse ever occurs.)
 
However, one of the main scientists associated with the Copenhagen interpretation, [[Niels Bohr]], never had in mind the observer-induced collapse of the wave function, as he did not regard the wave function as physically real, but a statistical tool; thus, Schrödinger's cat did not pose any riddle to him. The cat would be either dead or alive long before the box is opened by a conscious [[Observer (quantum physics)|observer]].<ref name='Faye2008'>{{cite web | url = http://plato.stanford.edu/entries/qm-copenhagen/ | title = Copenhagen Interpretation of Quantum Mechanics | accessdate = 2010-09-19 | last = Faye | first = J | date = 2008-01-24 | encyclopedia = [[Stanford Encyclopedia of Philosophy]] | publisher = The Metaphysics Research Lab Center for the Study of Language and Information, [[Stanford University]]}}</ref> Analysis of an actual experiment found that measurement alone (for example by a Geiger counter) is sufficient to collapse a quantum wave function before there is any conscious observation of the measurement,<ref name='Carpenter2006'>{{cite journal | title = The death of Schroedinger's cat and of consciousness-based wave-function collapse | journal = [[Annales de la Fondation Louis de Broglie]] | year = 2006 | author = Carpenter RHS, Anderson AJ | volume = 31 | issue = 1 | pages = 45–52| id = | url = http://www.ensmp.fr/aflb/AFLB-311/aflb311m387.pdf  | accessdate = 2010-09-10 |archiveurl = https://web.archive.org/web/20061130173850/http://www.ensmp.fr/aflb/AFLB-311/aflb311m387.pdf |archivedate = 2006-11-30}}</ref> although the validity of their design is disputed.<ref name='Okon2006'>{{cite journal | title = How to Back up or Refute Quantum Theories of Consciousness | journal = Mind and Matter | year = 2016 | author = Okón E, Sebastián MA | volume = 14 | issue = 1 | pages = 25–49}}</ref> (The view that the "observation" is taken when a particle from the nucleus hits the detector can be developed into [[objective collapse theories]]. The thought experiment requires an "unconscious observation" by the detector in order for waveform collapse to occur. In contrast, the [[many worlds]] approach denies that collapse ever occurs.)
   −
However, one of the main scientists associated with the Copenhagen interpretation, Niels Bohr, never had in mind the observer-induced collapse of the wave function, as he did not regard the wave function as physically real, but a statistical tool; thus, Schrödinger's cat did not pose any riddle to him. The cat would be either dead or alive long before the box is opened by a conscious observer. Analysis of an actual experiment found that measurement alone (for example by a Geiger counter) is sufficient to collapse a quantum wave function before there is any conscious observation of the measurement, although the validity of their design is disputed. (The view that the "observation" is taken when a particle from the nucleus hits the detector can be developed into objective collapse theories. The thought experiment requires an "unconscious observation" by the detector in order for waveform collapse to occur. In contrast, "<font color=”#32CD32”>the many worlds approach" </font>denies that collapse ever occurs.)
+
但是,哥本哈根诠释的主要科学家尼尔斯·玻尔从未认为是观察者引起了波函数的坍缩,因为他并不认为波函数真实存在,它只是一个统计工具。因此薛定谔的猫对他来说不是什么谜题。早在意识的观察者<ref name="Faye2008" /> 打开盒子前,猫就已经死去或者仍然活着。分析一个真实的实验会发现,尽管实验涉及的有效性尚有争议<ref name="Okon2006" />,在有意识的观察者对测量结果<ref name="Carpenter2006" /> 进行观察前,测量本身(比如盖革计数器)就足以使量子波函数发生坍缩。(这种当原子核中的粒子撞击监测器时“观察”已经发生的观点可以发展为客观坍缩理论。在薛定谔的思维实验中,波函数要发生坍缩,监测器需要进行“无意识观察”。相比之下,“多世界理论”否认曾发生过坍缩。
   −
但是,哥本哈根诠释的主要科学家尼尔斯·玻尔从未认为是观察者引起了波函数的坍缩,因为他并不认为波函数真实存在,它只是一个统计工具。因此薛定谔的猫对他来说不是什么谜题。早在意识的观察者打开盒子前,猫就已经死去或者仍然活着。分析一个真实的实验会发现,尽管实验涉及的有效性尚有争议,在有意识的观察者对测量结果进行观察前,测量本身(比如盖革计数器)就足以使量子波函数发生坍缩。(这种当原子核中的粒子撞击监测器时“观察”已经发生的观点可以发展为客观坍缩理论。在薛定谔的思维实验中,波函数要发生坍缩,监测器需要进行“无意识观察”。相比之下,“多世界理论”否认曾发生过坍缩。
      
===Many-worlds interpretation and consistent histories===<br>
 
===Many-worlds interpretation and consistent histories===<br>
第776行: 第174行:  
In 1957, [[Hugh Everett]] formulated the many-worlds interpretation of quantum mechanics, which does not single out observation as a special process. In the many-worlds interpretation, both alive and dead states of the cat persist after the box is opened, but are [[quantum decoherence|decoherent]] from each other. In other words, when the box is opened, the observer and the possibly-dead cat split into an observer looking at a box with a dead cat, and an observer looking at a box with a live cat. But since the dead and alive states are decoherent, there is no effective communication or interaction between them.
 
In 1957, [[Hugh Everett]] formulated the many-worlds interpretation of quantum mechanics, which does not single out observation as a special process. In the many-worlds interpretation, both alive and dead states of the cat persist after the box is opened, but are [[quantum decoherence|decoherent]] from each other. In other words, when the box is opened, the observer and the possibly-dead cat split into an observer looking at a box with a dead cat, and an observer looking at a box with a live cat. But since the dead and alive states are decoherent, there is no effective communication or interaction between them.
   −
In 1957, Hugh Everett formulated the many-worlds interpretation of quantum mechanics, which does not single out observation as a special process. In the many-worlds interpretation, both alive and dead states of the cat persist after the box is opened, but are decoherent from each other. In other words, when the box is opened, the observer and the possibly-dead cat split into an observer looking at a box with a dead cat, and an observer looking at a box with a live cat. But since the dead and alive states are decoherent, there is no effective communication or interaction between them.
      
1957年,休·埃弗莱特提出了量子力学的多世界诠释,该诠释并不把观察视为一个特殊过程。在多世界诠释中,盒子打开后,活猫和死猫仍然存在,但彼此之间是退相干的。换句话说,盒子被打开时,观察者和可能死亡的猫分裂成两个分支:观察者看着盒中的死猫,观察者看着盒中的活猫。但由于死态和活态是退相干的,它们之间无法发生有效的交流或相互作用。
 
1957年,休·埃弗莱特提出了量子力学的多世界诠释,该诠释并不把观察视为一个特殊过程。在多世界诠释中,盒子打开后,活猫和死猫仍然存在,但彼此之间是退相干的。换句话说,盒子被打开时,观察者和可能死亡的猫分裂成两个分支:观察者看着盒中的死猫,观察者看着盒中的活猫。但由于死态和活态是退相干的,它们之间无法发生有效的交流或相互作用。
  −
        第787行: 第182行:  
When opening the box, the observer becomes entangled with the cat, so "observer states" corresponding to the cat's being alive and dead are formed; each observer state is [[quantum entanglement|entangled or linked]] with the cat so that the "observation of the cat's state" and the "cat's state" correspond with each other.  Quantum decoherence ensures that the different outcomes have no interaction with each other. The same mechanism of quantum decoherence is also important for the interpretation in terms of [[consistent histories]]. Only the "dead cat" or the "alive cat" can be a part of a consistent history in this interpretation. Decoherence is generally considered to prevent simultaneous observation of multiple states.<ref name="zurek03">{{cite journal | last1 = Zurek | first1 = Wojciech H. | authorlink = Wojciech H. Zurek | year = 2003 | title = Decoherence, einselection, and the quantum origins of the classical | arxiv = quant-ph/0105127 | journal = Reviews of Modern Physics | volume = 75 | issue = 3| page = 715 | doi=10.1103/revmodphys.75.715| bibcode = 2003RvMP...75..715Z }}</ref><ref name="zurek91">[[Wojciech H. Zurek]], "Decoherence and the transition from quantum to classical", ''Physics Today'', 44, pp. 36–44 (1991)</ref>
 
When opening the box, the observer becomes entangled with the cat, so "observer states" corresponding to the cat's being alive and dead are formed; each observer state is [[quantum entanglement|entangled or linked]] with the cat so that the "observation of the cat's state" and the "cat's state" correspond with each other.  Quantum decoherence ensures that the different outcomes have no interaction with each other. The same mechanism of quantum decoherence is also important for the interpretation in terms of [[consistent histories]]. Only the "dead cat" or the "alive cat" can be a part of a consistent history in this interpretation. Decoherence is generally considered to prevent simultaneous observation of multiple states.<ref name="zurek03">{{cite journal | last1 = Zurek | first1 = Wojciech H. | authorlink = Wojciech H. Zurek | year = 2003 | title = Decoherence, einselection, and the quantum origins of the classical | arxiv = quant-ph/0105127 | journal = Reviews of Modern Physics | volume = 75 | issue = 3| page = 715 | doi=10.1103/revmodphys.75.715| bibcode = 2003RvMP...75..715Z }}</ref><ref name="zurek91">[[Wojciech H. Zurek]], "Decoherence and the transition from quantum to classical", ''Physics Today'', 44, pp. 36–44 (1991)</ref>
   −
When opening the box, the observer becomes entangled with the cat, so "observer states" corresponding to the cat's being alive and dead are formed; each observer state is entangled or linked with the cat so that the "observation of the cat's state" and the "cat's state" correspond with each other.  Quantum decoherence ensures that the different outcomes have no interaction with each other. The same mechanism of quantum decoherence is also important for the interpretation in terms of consistent histories. Only the "dead cat" or the "alive cat" can be a part of a consistent history in this interpretation. Decoherence is generally considered to prevent simultaneous observation of multiple states.
+
打开盒子时,观察者与猫纠缠在一起,因此形成了对应猫生与死的“观察者状态”;每个观察者状态都与猫纠缠或联系在一起,因此“猫状态的观察”与“猫的状态”相对应。量子退相干确保不同的结果不会相互影响,对多世界诠释的历史一致论也很重要。在多世界诠释中,只有“死猫”或“活猫”才能称为一致历史的一部分。通常认为退相干是为了避免同时对多个叠加态<ref name="zurek03" /><ref name="zurek91" />进行观察。
   −
打开盒子时,观察者与猫纠缠在一起,因此形成了对应猫生与死的“观察者状态”;每个观察者状态都与猫纠缠或联系在一起,因此“猫状态的观察”与“猫的状态”相对应。量子退相干确保不同的结果不会相互影响,对多世界诠释的历史一致论也很重要。在多世界诠释中,只有“死猫”或“活猫”才能称为一致历史的一部分。通常认为退相干是为了避免同时对多个叠加态进行观察。
        第795行: 第189行:     
A variant of the Schrödinger's cat experiment, known as the [[Quantum suicide and immortality|quantum suicide]] machine, has been proposed by cosmologist [[Max Tegmark]]. It examines the Schrödinger's cat experiment from the point of view of the cat, and argues that by using this approach, one may be able to distinguish between the Copenhagen interpretation and many-worlds.
 
A variant of the Schrödinger's cat experiment, known as the [[Quantum suicide and immortality|quantum suicide]] machine, has been proposed by cosmologist [[Max Tegmark]]. It examines the Schrödinger's cat experiment from the point of view of the cat, and argues that by using this approach, one may be able to distinguish between the Copenhagen interpretation and many-worlds.
  −
A variant of the Schrödinger's cat experiment, known as the quantum suicide machine, has been proposed by cosmologist Max Tegmark. It examines the Schrödinger's cat experiment from the point of view of the cat, and argues that by using this approach, one may be able to distinguish between the Copenhagen interpretation and many-worlds.
      
宇宙学家马克思·泰格马克提出了薛定谔猫实验的一个变体,称为量子自杀机。它从猫的角度检验薛定谔的猫实验,并认为通过这种方法,人们或许能够区分哥本哈根诠释和多世界诠释。
 
宇宙学家马克思·泰格马克提出了薛定谔猫实验的一个变体,称为量子自杀机。它从猫的角度检验薛定谔的猫实验,并认为通过这种方法,人们或许能够区分哥本哈根诠释和多世界诠释。
第806行: 第198行:     
The [[Ensemble Interpretation|ensemble interpretation]] states that superpositions are nothing but subensembles of a larger statistical ensemble. The state vector would not apply to individual cat experiments, but only to the statistics of many similarly prepared cat experiments. Proponents of this interpretation state that this makes the Schrödinger's cat paradox a trivial matter, or a non-issue.
 
The [[Ensemble Interpretation|ensemble interpretation]] states that superpositions are nothing but subensembles of a larger statistical ensemble. The state vector would not apply to individual cat experiments, but only to the statistics of many similarly prepared cat experiments. Proponents of this interpretation state that this makes the Schrödinger's cat paradox a trivial matter, or a non-issue.
  −
The ensemble interpretation states that superpositions are nothing but subensembles of a larger statistical ensemble. The state vector would not apply to individual cat experiments, but only to the statistics of many similarly prepared cat experiments. Proponents of this interpretation state that this makes the Schrödinger's cat paradox a trivial matter, or a non-issue.
      
'''<font color=”#ff8000”>系综诠释ensemble interpretation</font>'''指出,叠加态不过是一个更大系综的子系综。态矢量不适用于单个猫实验,而仅适用于大量相似准备的猫实验的统计数据。该诠释的支持者认为,这使得薛定谔的猫悖论变得无关紧要,或者说根本不是问题。
 
'''<font color=”#ff8000”>系综诠释ensemble interpretation</font>'''指出,叠加态不过是一个更大系综的子系综。态矢量不适用于单个猫实验,而仅适用于大量相似准备的猫实验的统计数据。该诠释的支持者认为,这使得薛定谔的猫悖论变得无关紧要,或者说根本不是问题。
第813行: 第203行:       −
This interpretation serves to ''discard'' the idea that a single physical system in quantum mechanics has a mathematical description that corresponds to it in any way.<ref>{{Cite journal|last=Smolin|first=Lee|date=October 2012|title=A real ensemble interpretation of quantum mechanics|journal=Foundations of Physics|volume=42|issue=10|pages=1239–1261|doi=10.1007/s10701-012-9666-4|issn=0015-9018|arxiv=1104.2822|bibcode=2012FoPh...42.1239S}}</ref>
+
This interpretation serves to ''discard'' the idea that a single physical system in quantum mechanics has a mathematical description that corresponds to it in any way.<ref name=":2">{{Cite journal|last=Smolin|first=Lee|date=October 2012|title=A real ensemble interpretation of quantum mechanics|journal=Foundations of Physics|volume=42|issue=10|pages=1239–1261|doi=10.1007/s10701-012-9666-4|issn=0015-9018|arxiv=1104.2822|bibcode=2012FoPh...42.1239S}}</ref>
   −
This interpretation serves to discard the idea that a single physical system in quantum mechanics has a mathematical description that corresponds to it in any way.
+
这一诠释抛弃了单一量子力学系统有一个始终对应的数学描述这一观点<ref name=":2" />。
   −
这一诠释抛弃了单一量子力学系统有一个始终对应的数学描述这一观点。
        第824行: 第213行:  
关系诠释
 
关系诠释
   −
The [[Relational quantum mechanics|relational interpretation]] makes no fundamental distinction between the human experimenter, the cat, or the apparatus, or between animate and inanimate systems; all are quantum systems governed by the same rules of wavefunction [[Time evolution|evolution]], and all may be considered "observers". But the relational interpretation allows that different observers can give different accounts of the same series of events, depending on the information they have about the system.<ref>{{Cite journal|last = Rovelli|first = Carlo|authorlink = Carlo Rovelli|title = Relational Quantum Mechanics|journal = International Journal of Theoretical Physics|volume = 35|pages = 1637–1678|year = 1996|arxiv = quant-ph/9609002 |doi = 10.1007/BF02302261|bibcode = 1996IJTP...35.1637R|issue = 8 }}</ref> The cat can be considered an observer of the apparatus; meanwhile, the experimenter can be considered another observer of the system in the box (the cat plus the apparatus). Before the box is opened, the cat, by nature of its being alive or dead, has information about the state of the apparatus (the atom has either decayed or not decayed); but the experimenter does not have information about the state of the box contents. In this way, the two observers simultaneously have different accounts of the situation: To the cat, the wavefunction of the apparatus has appeared to "collapse"; to the experimenter, the contents of the box appear to be in superposition. Not until the box is opened, and both observers have the same information about what happened, do both system states appear to "collapse" into the same definite result, a cat that is either alive or dead.
+
The [[Relational quantum mechanics|relational interpretation]] makes no fundamental distinction between the human experimenter, the cat, or the apparatus, or between animate and inanimate systems; all are quantum systems governed by the same rules of wavefunction [[Time evolution|evolution]], and all may be considered "observers". But the relational interpretation allows that different observers can give different accounts of the same series of events, depending on the information they have about the system.<ref name=":3">{{Cite journal|last = Rovelli|first = Carlo|authorlink = Carlo Rovelli|title = Relational Quantum Mechanics|journal = International Journal of Theoretical Physics|volume = 35|pages = 1637–1678|year = 1996|arxiv = quant-ph/9609002 |doi = 10.1007/BF02302261|bibcode = 1996IJTP...35.1637R|issue = 8 }}</ref> The cat can be considered an observer of the apparatus; meanwhile, the experimenter can be considered another observer of the system in the box (the cat plus the apparatus). Before the box is opened, the cat, by nature of its being alive or dead, has information about the state of the apparatus (the atom has either decayed or not decayed); but the experimenter does not have information about the state of the box contents. In this way, the two observers simultaneously have different accounts of the situation: To the cat, the wavefunction of the apparatus has appeared to "collapse"; to the experimenter, the contents of the box appear to be in superposition. Not until the box is opened, and both observers have the same information about what happened, do both system states appear to "collapse" into the same definite result, a cat that is either alive or dead.
   −
The relational interpretation makes no fundamental distinction between the human experimenter, the cat, or the apparatus, or between animate and inanimate systems; all are quantum systems governed by the same rules of wavefunction evolution, and all may be considered "observers". But the relational interpretation allows that different observers can give different accounts of the same series of events, depending on the information they have about the system. The cat can be considered an observer of the apparatus; meanwhile, the experimenter can be considered another observer of the system in the box (the cat plus the apparatus). Before the box is opened, the cat, by nature of its being alive or dead, has information about the state of the apparatus (the atom has either decayed or not decayed); but the experimenter does not have information about the state of the box contents. In this way, the two observers simultaneously have different accounts of the situation: To the cat, the wavefunction of the apparatus has appeared to "collapse"; to the experimenter, the contents of the box appear to be in superposition. Not until the box is opened, and both observers have the same information about what happened, do both system states appear to "collapse" into the same definite result, a cat that is either alive or dead.
+
'''<font color="”#ff8000”">关系诠释relational interpretation</font>'''认为人类实验者、猫或装置之间,或者生命体与非生命体之间没有本质区别;所有这些遵循相同波函数演化规则的量子系统都可以被认为是“观察者”。但是关系诠释允许不同的观察者根据掌握的不同盒内系统信息<ref name=":3" /> ,对同一系列事件给出不同的解释。猫可以被认为是装置的观察者;同时,实验者可以被认为是盒内系统(猫和装置)的另一个观察者。在盒子被打开之前,根据自身的死活,猫拥有关于设备状态的信息(原子要么已经衰变要么没有衰变);但是实验者并不掌握这些信息。这样,在同一时刻两个观察者对于盒子的状态有不同的描述:对猫来说,装置的波函数“坍缩”了,对实验者来说,盒内系统处于叠加态。直到盒子被打开,两个观察者对所发生的事情都掌握了同样的信息,两个系统才“坍缩”为同样一个确定结果,既猫不是活着就是死了。
   −
'''<font color=”#ff8000”>关系诠释relational interpretation</font>'''认为人类实验者、猫或装置之间,或者生命体与非生命体之间没有本质区别;所有这些遵循相同波函数演化规则的量子系统都可以被认为是“观察者”。但是关系诠释允许不同的观察者根据掌握的不同盒内系统信息,对同一系列事件给出不同的解释。猫可以被认为是装置的观察者;同时,实验者可以被认为是盒内系统(猫和装置)的另一个观察者。在盒子被打开之前,根据自身的死活,猫拥有关于设备状态的信息(原子要么已经衰变要么没有衰变);但是实验者并不掌握这些信息。这样,在同一时刻两个观察者对于盒子的状态有不同的描述:对猫来说,装置的波函数“坍缩”了,对实验者来说,盒内系统处于叠加态。直到盒子被打开,两个观察者对所发生的事情都掌握了同样的信息,两个系统才“坍缩”为同样一个确定结果,既猫不是活着就是死了。
        第836行: 第224行:  
交易诠释
 
交易诠释
   −
In the [[transactional interpretation]] the apparatus emits an advanced wave backward in time, which combined with the wave that the source emits forward in time, forms a standing wave.  The waves are seen as physically real, and the apparatus is considered an "observer".  In the transactional interpretation, the collapse of the wavefunction is "atemporal" and occurs along the whole transaction between the source and the apparatus.  The cat is never in superposition.  Rather the cat is only in one state at any particular time, regardless of when the human experimenter looks in the box.  The transactional interpretation resolves this quantum paradox.<ref>{{Cite book|last=Cramer|first=John G.|url=https://www.researchgate.net/publication/280926546|title=The transactional interpretation of quantum mechanics|publisher=Reviews of Modern Physics|date=July 1986|isbn=|volume=58|location=|pages=647–685}}</ref>
+
In the [[transactional interpretation]] the apparatus emits an advanced wave backward in time, which combined with the wave that the source emits forward in time, forms a standing wave.  The waves are seen as physically real, and the apparatus is considered an "observer".  In the transactional interpretation, the collapse of the wavefunction is "atemporal" and occurs along the whole transaction between the source and the apparatus.  The cat is never in superposition.  Rather the cat is only in one state at any particular time, regardless of when the human experimenter looks in the box.  The transactional interpretation resolves this quantum paradox.<ref name=":4">{{Cite book|last=Cramer|first=John G.|url=https://www.researchgate.net/publication/280926546|title=The transactional interpretation of quantum mechanics|publisher=Reviews of Modern Physics|date=July 1986|isbn=|volume=58|location=|pages=647–685}}</ref>
   −
In the transactional interpretation the apparatus emits an advanced wave backward in time, which combined with the wave that the source emits forward in time, forms a standing wave.  The waves are seen as physically real, and the apparatus is considered an "observer".  In the transactional interpretation, the collapse of the wavefunction is "atemporal" and occurs along the whole transaction between the source and the apparatus.  The cat is never in superposition.  Rather the cat is only in one state at any particular time, regardless of when the human experimenter looks in the box.  The transactional interpretation resolves this quantum paradox.
+
在'''<font color="”#ff8000”">交易诠释transactional interpretation</font>'''中,实验装置发射一个逆着时间行进的超前波,超前波与粒子源发射的顺着时间行进的波相互作用,形成驻波。这些波被认为是真实存在的,装置被视为“观察者”。在交易诠释中,波函数的坍缩是“非时间性的”,并且发生在粒子源与实验装置相互作用的整个阶段。猫从未处于叠加态,相反,不管人类实验者什么时候看盒子,猫在任何特定时间都只处于一种状态。这样交易诠释就解决了这一量子悖论<ref name=":4" />。
   −
在'''<font color=”#ff8000”>交易诠释transactional interpretation</font>'''中,实验装置发射一个逆着时间行进的超前波,超前波与粒子源发射的顺着时间行进的波相互作用,形成驻波。这些波被认为是真实存在的,装置被视为“观察者”。在交易诠释中,波函数的坍缩是“非时间性的”,并且发生在粒子源与实验装置相互作用的整个阶段。猫从未处于叠加态,相反,不管人类实验者什么时候看盒子,猫在任何特定时间都只处于一种状态。这样交易诠释就解决了这一量子悖论。
        第848行: 第235行:     
The [[Quantum Zeno effect|Zeno effect]] is known to cause delays to any changes from the initial state.
 
The [[Quantum Zeno effect|Zeno effect]] is known to cause delays to any changes from the initial state.
  −
The Zeno effect is known to cause delays to any changes from the initial state.
      
'''<font color=”#ff8000”>量子芝诺效应zeno effect</font>'''指延缓量子从对初始状态到其他状态的演化。
 
'''<font color=”#ff8000”>量子芝诺效应zeno effect</font>'''指延缓量子从对初始状态到其他状态的演化。
第855行: 第240行:       −
On the other hand, the anti-Zeno effect accelerates the changes. For example, if you peek a look into the cat box frequently you may either cause delays to the fateful choice or, conversely, accelerate it.  Both the Zeno effect and the anti-Zeno effect are real and known to happen to real atoms. The quantum system being measured must be strongly coupled to the surrounding environment (in this case to the apparatus, the experiment room ... etc.) in order to obtain more accurate information. But while there is no information passed to the outside world, it is considered to be a ''quasi-measurement'', but as soon as the information about the cat's well-being is passed on to the outside world (by peeking into the box) quasi-measurement turns into measurement.  Quasi-measurements, like measurements, cause the Zeno effects.<ref>{{cite web|title=How the quantum Zeno effect impacts Schrodinger's cat|url=https://phys.org/news/2017-06-quantum-zeno-effect-impacts-schroedinger.html|website=phys.org|accessdate=18 June 2017|url-status=live|archiveurl=https://web.archive.org/web/20170617153012/https://phys.org/news/2017-06-quantum-zeno-effect-impacts-schroedinger.html|archivedate=17 June 2017}}</ref>  Zeno effects teach us that even without peeking into the box, the death of the cat would have been delayed or accelerated anyway due to its environment.
+
On the other hand, the anti-Zeno effect accelerates the changes. For example, if you peek a look into the cat box frequently you may either cause delays to the fateful choice or, conversely, accelerate it.  Both the Zeno effect and the anti-Zeno effect are real and known to happen to real atoms. The quantum system being measured must be strongly coupled to the surrounding environment (in this case to the apparatus, the experiment room ... etc.) in order to obtain more accurate information. But while there is no information passed to the outside world, it is considered to be a ''quasi-measurement'', but as soon as the information about the cat's well-being is passed on to the outside world (by peeking into the box) quasi-measurement turns into measurement.  Quasi-measurements, like measurements, cause the Zeno effects.<ref name=":5">{{cite web|title=How the quantum Zeno effect impacts Schrodinger's cat|url=https://phys.org/news/2017-06-quantum-zeno-effect-impacts-schroedinger.html|website=phys.org|accessdate=18 June 2017|url-status=live|archiveurl=https://web.archive.org/web/20170617153012/https://phys.org/news/2017-06-quantum-zeno-effect-impacts-schroedinger.html|archivedate=17 June 2017}}</ref>  Zeno effects teach us that even without peeking into the box, the death of the cat would have been delayed or accelerated anyway due to its environment.
   −
On the other hand, the anti-Zeno effect accelerates the changes. For example, if you peek a look into the cat box frequently you may either cause delays to the fateful choice or, conversely, accelerate it.  Both the Zeno effect and the anti-Zeno effect are real and known to happen to real atoms. The quantum system being measured must be strongly coupled to the surrounding environment (in this case to the apparatus, the experiment room ... etc.) in order to obtain more accurate information. But while there is no information passed to the outside world, it is considered to be a quasi-measurement, but as soon as the information about the cat's well-being is passed on to the outside world (by peeking into the box) quasi-measurement turns into measurement.  Quasi-measurements, like measurements, cause the Zeno effects.  Zeno effects teach us that even without peeking into the box, the death of the cat would have been delayed or accelerated anyway due to its environment.
+
另一方面,存在加速量子系统演化的反芝诺效应。例如,如果你频繁地窥视放置猫的盒子,你可能会延迟或加速决定性选择。芝诺效应和反芝诺效应都是真实存在的,并且已知会发生在真实的原子上。被测量的量子系统必须与周围环境(在这个例子中是实验装置、实验室等)强耦合,以获得更准确的信息。但是,在薛定的猫实验中,没有信息传递到盒子外部,这种与环境的耦合被认为是一种准测量,但是一旦猫的生死(通过窥视盒子)传递到了盒子外部,准测量就变成了测量。准测量和测量一样都会引起芝诺效应<ref name=":5" />。芝诺效应告诉我们,即使不窥视盒子,猫的死亡也会因为环境而被延迟或加速。
   −
另一方面,存在加速量子系统演化的反芝诺效应。例如,如果你频繁地窥视放置猫的盒子,你可能会延迟或加速决定性选择。芝诺效应和反芝诺效应都是真实存在的,并且已知会发生在真实的原子上。被测量的量子系统必须与周围环境(在这个例子中是实验装置、实验室等)强耦合,以获得更准确的信息。但是,在薛定的猫实验中,没有信息传递到盒子外部,这种与环境的耦合被认为是一种准测量,但是一旦猫的生死(通过窥视盒子)传递到了盒子外部,准测量就变成了测量。准测量和测量一样都会引起芝诺效应。芝诺效应告诉我们,即使不窥视盒子,猫的死亡也会因为环境而被延迟或加速。
        第867行: 第251行:     
According to [[objective collapse theories]], superpositions are destroyed spontaneously (irrespective of external observation), when some objective physical threshold (of time, mass, temperature, [[irreversibility]], etc.) is reached. Thus, the cat would be expected to have settled into a definite state long before the box is opened. This could loosely be phrased as "the cat observes itself", or "the environment observes the cat".
 
According to [[objective collapse theories]], superpositions are destroyed spontaneously (irrespective of external observation), when some objective physical threshold (of time, mass, temperature, [[irreversibility]], etc.) is reached. Thus, the cat would be expected to have settled into a definite state long before the box is opened. This could loosely be phrased as "the cat observes itself", or "the environment observes the cat".
  −
According to objective collapse theories, superpositions are destroyed spontaneously (irrespective of external observation), when some objective physical threshold (of time, mass, temperature, irreversibility, etc.) is reached. Thus, the cat would be expected to have settled into a definite state long before the box is opened. This could loosely be phrased as "the cat observes itself", or "the environment observes the cat".
      
根据''<font color=”#ff8000”>客观塌缩理论objective collapse theories</font>'',当达到某些客观物理阈值(时间、质量、温度、不可逆性等),叠加态会自动地被破坏(与外部观察无关)。因此,猫应该早在盒子被打开之前很久就已经稳定在一个确定状态。这可以粗略地称为“猫观察自己”,或者“环境观察猫”。
 
根据''<font color=”#ff8000”>客观塌缩理论objective collapse theories</font>'',当达到某些客观物理阈值(时间、质量、温度、不可逆性等),叠加态会自动地被破坏(与外部观察无关)。因此,猫应该早在盒子被打开之前很久就已经稳定在一个确定状态。这可以粗略地称为“猫观察自己”,或者“环境观察猫”。
第874行: 第256行:       −
Objective collapse theories require a modification of standard quantum mechanics to allow superpositions to be destroyed by the process of time evolution.<ref>{{Cite journal|last=Okon|first=Elias|last2=Sudarsky|first2=Daniel|date=2014-02-01|title=Benefits of Objective Collapse Models for Cosmology and Quantum Gravity|journal=Foundations of Physics|language=en|volume=44|issue=2|pages=114–143|doi=10.1007/s10701-014-9772-6|issn=1572-9516|arxiv=1309.1730|bibcode=2014FoPh...44..114O}}</ref>
+
Objective collapse theories require a modification of standard quantum mechanics to allow superpositions to be destroyed by the process of time evolution.<ref name=":6">{{Cite journal|last=Okon|first=Elias|last2=Sudarsky|first2=Daniel|date=2014-02-01|title=Benefits of Objective Collapse Models for Cosmology and Quantum Gravity|journal=Foundations of Physics|language=en|volume=44|issue=2|pages=114–143|doi=10.1007/s10701-014-9772-6|issn=1572-9516|arxiv=1309.1730|bibcode=2014FoPh...44..114O}}</ref>
   −
Objective collapse theories require a modification of standard quantum mechanics to allow superpositions to be destroyed by the process of time evolution.
+
客观坍缩理论需要对标准量子力学进行修改,以允许叠加态被时间演化<ref name=":6" />破坏。
   −
客观坍缩理论需要对标准量子力学进行修改,以允许叠加态被时间演化破坏。
        第895行: 第276行:       −
The experiment as described is a purely theoretical one, and the machine proposed is not known to have been constructed. However, successful experiments involving similar principles, e.g. superpositions of [[mesoscopic|relatively large]] (by the standards of quantum physics) objects have been performed.<ref>{{cite web|url=http://physics.stackexchange.com/questions/3309/what-is-the-worlds-biggest-schrodinger-cat|title=What is the world's biggest Schrodinger cat?|website=stackexchange.com|url-status=live|archiveurl=https://web.archive.org/web/20120108000629/http://physics.stackexchange.com/questions/3309/what-is-the-worlds-biggest-schrodinger-cat|archivedate=2012-01-08}}</ref> These experiments do not show that a cat-sized object can be superposed, but the known upper limit on "[[cat state]]s" has been pushed upwards by them. In many cases the state is short-lived, even when cooled to near [[absolute zero]].
+
The experiment as described is a purely theoretical one, and the machine proposed is not known to have been constructed. However, successful experiments involving similar principles, e.g. superpositions of [[mesoscopic|relatively large]] (by the standards of quantum physics) objects have been performed.<ref name=":7">{{cite web|url=http://physics.stackexchange.com/questions/3309/what-is-the-worlds-biggest-schrodinger-cat|title=What is the world's biggest Schrodinger cat?|website=stackexchange.com|url-status=live|archiveurl=https://web.archive.org/web/20120108000629/http://physics.stackexchange.com/questions/3309/what-is-the-worlds-biggest-schrodinger-cat|archivedate=2012-01-08}}</ref> These experiments do not show that a cat-sized object can be superposed, but the known upper limit on "[[cat state]]s" has been pushed upwards by them. In many cases the state is short-lived, even when cooled to near [[absolute zero]].
 
  −
The experiment as described is a purely theoretical one, and the machine proposed is not known to have been constructed. However, successful experiments involving similar principles, e.g. superpositions of relatively large (by the standards of quantum physics) objects have been performed. These experiments do not show that a cat-sized object can be superposed, but the known upper limit on "cat states" has been pushed upwards by them. In many cases the state is short-lived, even when cooled to near absolute zero.
     −
薛定谔的猫实验是纯理论性的,所涉及的实验装置并被制造出来。但是,很多涉及类似原理的实验已经取得成功,例如一些(在量子力学标准中)相对较大系统的叠加态已经实现。这些实验并没有表明与猫大小一样的物体可以处于叠加态,但是这些实验提升了存在“猫态”的系统的大小上线。在很多实验中,即使冷却到接近绝对零度,猫态也只能短暂存在。
+
薛定谔的猫实验是纯理论性的,所涉及的实验装置并被制造出来。但是,很多涉及类似原理的实验已经取得成功,例如一些(在量子力学标准中)相对较大系统的叠加态已经实现<ref name=":7" />。这些实验并没有表明与猫大小一样的物体可以处于叠加态,但是这些实验提升了存在“猫态”的系统的大小上线。在很多实验中,即使冷却到接近绝对零度,猫态也只能短暂存在。
   −
* A "cat state" has been achieved with photons.<ref>{{cite web|url=http://www.science20.com/news_articles/schr%C3%B6dingers_cat_now_made_light|title=Schrödinger's Cat Now Made Of Light|date=27 August 2014|website=www.science20.com|url-status=live|archiveurl=https://web.archive.org/web/20120318091956/http://www.science20.com/news_articles/schr%C3%B6dingers_cat_now_made_light|archivedate=18 March 2012}}</ref><br>多光子的“猫态”已经实现。
+
* A "cat state" has been achieved with photons.<ref name=":8">{{cite web|url=http://www.science20.com/news_articles/schr%C3%B6dingers_cat_now_made_light|title=Schrödinger's Cat Now Made Of Light|date=27 August 2014|website=www.science20.com|url-status=live|archiveurl=https://web.archive.org/web/20120318091956/http://www.science20.com/news_articles/schr%C3%B6dingers_cat_now_made_light|archivedate=18 March 2012}}</ref><br>多光子的“猫态”已经实现<ref name=":8" />。
   −
* A beryllium ion has been trapped in a superposed state.<ref>[http://www.quantumsciencephilippines.com/seminar/seminar-topics/SchrodingerCatAtom.pdf C. Monroe, et al.  ''A "Schrödinger Cat" Superposition State of an Atom''] {{webarchive|url=https://web.archive.org/web/20120107013418/http://www.quantumsciencephilippines.com/seminar/seminar-topics/SchrodingerCatAtom.pdf |date=2012-01-07 }}</ref><br>观测到处于叠加态的被捕获的铍离子。
+
* A beryllium ion has been trapped in a superposed state.<ref name=":9">[http://www.quantumsciencephilippines.com/seminar/seminar-topics/SchrodingerCatAtom.pdf C. Monroe, et al.  ''A "Schrödinger Cat" Superposition State of an Atom''] {{webarchive|url=https://web.archive.org/web/20120107013418/http://www.quantumsciencephilippines.com/seminar/seminar-topics/SchrodingerCatAtom.pdf |date=2012-01-07 }}</ref><br>观测到处于叠加态的被捕获的铍离子<ref name=":9" />。
   −
* An experiment involving a [[superconducting quantum interference device]] ("SQUID") has been linked to the theme of the thought experiment: "The superposition state does not correspond to a billion electrons flowing one way and a billion others flowing the other way. Superconducting electrons move en masse. All the superconducting electrons in the SQUID flow both ways around the loop at once when they are in the Schrödinger's cat state."<ref>[https://physicsworld.com/a/schrodingers-cat-comes-into-view/ Physics World: ''Schrödinger's cat comes into view'']</ref><br>一项涉及超导量子干涉仪( SQUID)的实验与薛定谔思想实验的主题联系在一起:“叠加态并不是说十亿个电子正向流动,十亿个电子反向流动。超导电子总是沿同一方向移动,当超导量子干涉仪中的所有超导电子都处于薛定谔的猫态时,它们会同时在回路中双向流动。“
+
* An experiment involving a [[superconducting quantum interference device]] ("SQUID") has been linked to the theme of the thought experiment: "The superposition state does not correspond to a billion electrons flowing one way and a billion others flowing the other way. Superconducting electrons move en masse. All the superconducting electrons in the SQUID flow both ways around the loop at once when they are in the Schrödinger's cat state."<ref name=":10">[https://physicsworld.com/a/schrodingers-cat-comes-into-view/ Physics World: ''Schrödinger's cat comes into view'']</ref><br>一项涉及超导量子干涉仪( SQUID)的实验与薛定谔思想实验的主题联系在一起:“叠加态并不是说十亿个电子正向流动,十亿个电子反向流动。超导电子总是沿同一方向移动,当超导量子干涉仪中的所有超导电子都处于薛定谔的猫态<ref name=":10" />时,它们会同时在回路中双向流动。“
   −
* A [[piezoelectric]] "tuning fork" has been constructed, which can be placed into a superposition of vibrating and non vibrating states. The resonator comprises about 10 trillion atoms.<ref>[http://www.scientificamerican.com/article.cfm?id=quantum-microphone Scientific American :'' Macro-Weirdness: "Quantum Microphone" Puts Naked-Eye Object in 2 Places at Once: A new device tests the limits of Schrödinger's cat''] {{webarchive|url=https://web.archive.org/web/20120319021316/http://www.scientificamerican.com/article.cfm?id=quantum-microphone |date=2012-03-19 }}</ref><br>一种压电“音叉”已经被制造出来,可被置于振动和非振动状态的叠加态。谐振器包含约10万亿个原子。
+
* A [[piezoelectric]] "tuning fork" has been constructed, which can be placed into a superposition of vibrating and non vibrating states. The resonator comprises about 10 trillion atoms.<ref name=":11">[http://www.scientificamerican.com/article.cfm?id=quantum-microphone Scientific American :'' Macro-Weirdness: "Quantum Microphone" Puts Naked-Eye Object in 2 Places at Once: A new device tests the limits of Schrödinger's cat''] {{webarchive|url=https://web.archive.org/web/20120319021316/http://www.scientificamerican.com/article.cfm?id=quantum-microphone |date=2012-03-19 }}</ref><br>一种压电“音叉”已经被制造出来,可被置于振动和非振动状态的叠加态。谐振器包含约10万亿个原子<ref name=":11" />。
   −
* An experiment involving a flu virus has been proposed.<ref>{{cite web|url=http://www.technologyreview.com/blog/arxiv/24101/|title=How to Create Quantum Superpositions of Living Things|first=Emerging Technology from the|last=arXiv|publisher=}}</ref><br>一项涉及流感病毒的实验已被提出。
+
* An experiment involving a flu virus has been proposed.<ref name=":12">{{cite web|url=http://www.technologyreview.com/blog/arxiv/24101/|title=How to Create Quantum Superpositions of Living Things|first=Emerging Technology from the|last=arXiv|publisher=}}</ref><br>一项涉及流感病毒的实验已被提出<ref name=":12" />。
   −
* An experiment involving a bacterium and an electromechanical oscillator has been proposed.<ref>{{cite web|url=http://physicsworld.com/cws/article/news/2015/sep/21/could-schrodingers-bacterium-be-placed-in-a-quantum-superposition|title=Could 'Schrödinger's bacterium' be placed in a quantum superposition?|website=physicsworld.com|url-status=live|archiveurl=https://web.archive.org/web/20160730174613/http://physicsworld.com/cws/article/news/2015/sep/21/could-schrodingers-bacterium-be-placed-in-a-quantum-superposition|archivedate=2016-07-30}}</ref><br>一项利用机电振荡器和细菌的实验已被提出。
+
* An experiment involving a bacterium and an electromechanical oscillator has been proposed.<ref name=":13">{{cite web|url=http://physicsworld.com/cws/article/news/2015/sep/21/could-schrodingers-bacterium-be-placed-in-a-quantum-superposition|title=Could 'Schrödinger's bacterium' be placed in a quantum superposition?|website=physicsworld.com|url-status=live|archiveurl=https://web.archive.org/web/20160730174613/http://physicsworld.com/cws/article/news/2015/sep/21/could-schrodingers-bacterium-be-placed-in-a-quantum-superposition|archivedate=2016-07-30}}</ref><br>一项利用机电振荡器和细菌的实验已被提出<ref name=":13" />。
          
In [[quantum computing]] the phrase "cat state" sometimes refers to the [[Greenberger–Horne–Zeilinger state|GHZ state]], wherein several qubits are in an equal superposition of all being 0 and all being 1; e.g.,
 
In [[quantum computing]] the phrase "cat state" sometimes refers to the [[Greenberger–Horne–Zeilinger state|GHZ state]], wherein several qubits are in an equal superposition of all being 0 and all being 1; e.g.,
  −
In quantum computing the phrase "cat state" sometimes refers to the GHZ state, wherein several qubits are in an equal superposition of all being 0 and all being 1; e.g.,
      
在量子计算中,“猫态”有时指GHZ态(Greenberg-Horne-Zeilinger态),其中若干量子比特处于全为0和全为1两种态的相等叠加态。
 
在量子计算中,“猫态”有时指GHZ态(Greenberg-Horne-Zeilinger态),其中若干量子比特处于全为0和全为1两种态的相等叠加态。
第933行: 第310行:  
According to at least one proposal, it may be possible to determine the state of the cat ''before'' observing it.<ref name="LS-20191107">{{cite news |last=Najjar |first=Dana |title=Physicists Can Finally Peek at Schrödinger's Cat Without Killing It Forever |url=https://www.livescience.com/schrodingers-cat-can-be-peeked-at.html |date=7 November 2019 |work=[[Live Science]] |accessdate=7 November 2019 }}</ref><ref name="NJP-20191001">{{cite journal |last1=Patekar |first1=Kartik |last2=Hofmann |first2=Holger F. |title=The role of system–meter entanglement in controlling the resolution and decoherence of quantum measurements |journal=[[New Journal of Physics]] |volume=21 |issue=10 |pages=103006 |doi=10.1088/1367-2630/ab4451 |year=2019 |doi-access=free }}</ref>
 
According to at least one proposal, it may be possible to determine the state of the cat ''before'' observing it.<ref name="LS-20191107">{{cite news |last=Najjar |first=Dana |title=Physicists Can Finally Peek at Schrödinger's Cat Without Killing It Forever |url=https://www.livescience.com/schrodingers-cat-can-be-peeked-at.html |date=7 November 2019 |work=[[Live Science]] |accessdate=7 November 2019 }}</ref><ref name="NJP-20191001">{{cite journal |last1=Patekar |first1=Kartik |last2=Hofmann |first2=Holger F. |title=The role of system–meter entanglement in controlling the resolution and decoherence of quantum measurements |journal=[[New Journal of Physics]] |volume=21 |issue=10 |pages=103006 |doi=10.1088/1367-2630/ab4451 |year=2019 |doi-access=free }}</ref>
   −
According to at least one proposal, it may be possible to determine the state of the cat before observing it.
+
至少有一种观点认为,有可能在观察猫之前就确定它的状态<ref name="LS-20191107" /><ref name="NJP-20191001" />。
   −
至少有一种观点认为,有可能在观察猫之前就确定它的状态。
        第943行: 第319行:     
[[Wigner's friend]] is a variant on the experiment with two human observers: the first makes an observation on whether a flash of light is seen and then communicates his observation to a second observer. The issue here is, does the wave function "collapse" when the first observer looks at the experiment, or only when the second observer is informed of the first observer's observations?
 
[[Wigner's friend]] is a variant on the experiment with two human observers: the first makes an observation on whether a flash of light is seen and then communicates his observation to a second observer. The issue here is, does the wave function "collapse" when the first observer looks at the experiment, or only when the second observer is informed of the first observer's observations?
  −
Wigner's friend is a variant on the experiment with two human observers: the first makes an observation on whether a flash of light is seen and then communicates his observation to a second observer. The issue here is, does the wave function "collapse" when the first observer looks at the experiment, or only when the second observer is informed of the first observer's observations?
      
“维格纳的朋友”是薛定谔实验的一个变体。实验中有两个人类观察者:第一个观察者通过观察确定是否看到闪光,然后将观察结果传递给第二个观察者。问题是,波函数究竟何时“坍缩”?是在第一个观察者进行观察时,还是只有当第二个观察者知道了第一个观察者的观察结果时?
 
“维格纳的朋友”是薛定谔实验的一个变体。实验中有两个人类观察者:第一个观察者通过观察确定是否看到闪光,然后将观察结果传递给第二个观察者。问题是,波函数究竟何时“坍缩”?是在第一个观察者进行观察时,还是只有当第二个观察者知道了第一个观察者的观察结果时?
第950行: 第324行:       −
In another extension, prominent physicists have gone so far as to suggest that astronomers observing [[dark energy]] in the universe in 1998 may have "reduced its life expectancy" through a pseudo-Schrödinger's cat scenario, although this is a controversial viewpoint.<ref>{{cite web
+
In another extension, prominent physicists have gone so far as to suggest that astronomers observing [[dark energy]] in the universe in 1998 may have "reduced its life expectancy" through a pseudo-Schrödinger's cat scenario, although this is a controversial viewpoint.<ref name=":14">{{cite web
   −
In another extension, prominent physicists have gone so far as to suggest that astronomers observing dark energy in the universe in 1998 may have "reduced its life expectancy" through a pseudo-Schrödinger's cat scenario, although this is a controversial viewpoint.<ref>{{cite web
+
In another extension, prominent physicists have gone so far as to suggest that astronomers observing dark energy in the universe in 1998 may have "reduced its life expectancy" through a pseudo-Schrödinger's cat scenario, although this is a controversial viewpoint.<nowiki><ref>{{cite web
    
另一方面,一些著名物理学家甚至认为,1998年观测到宇宙暗能量的天文学家可能通过一个伪薛定谔猫的假设“缩短了它的寿命”,尽管这是一个有争议的观点。
 
另一方面,一些著名物理学家甚至认为,1998年观测到宇宙暗能量的天文学家可能通过一个伪薛定谔猫的假设“缩短了它的寿命”,尽管这是一个有争议的观点。
   −
  |last        = Chown
+
  |</nowiki>last        =Chown
   −
|last        = Chown
+
<nowiki> </nowiki><nowiki>|</nowiki>last        =Chown
    
最后的巧克力
 
最后的巧克力
   −
|first      = Marcus
+
<nowiki> </nowiki><nowiki>|</nowiki>first      =Marcus
   −
|first      = Marcus
+
<nowiki> </nowiki><nowiki>|</nowiki>first      =Marcus
    
首先是马库斯
 
首先是马库斯
   −
|authorlink  = Marcus Chown
+
<nowiki> </nowiki><nowiki>|</nowiki>authorlink  =Marcus Chown
   −
|authorlink  = Marcus Chown
+
<nowiki> </nowiki><nowiki>|</nowiki>authorlink  =Marcus Chown
    
作者: Marcus Chown
 
作者: Marcus Chown
   −
|title      = Has observing the universe hastened its end?
+
<nowiki> </nowiki><nowiki>|</nowiki>title      =Has observing the universe hastened its end?
   −
|title      = Has observing the universe hastened its end?
+
<nowiki> </nowiki><nowiki>|</nowiki>title      =Has observing the universe hastened its end?
    
观察宇宙是否加速了它的结束?
 
观察宇宙是否加速了它的结束?
   −
|work        = [[New Scientist]]
+
<nowiki> </nowiki><nowiki>|</nowiki>work        =[[New Scientist]]
   −
  |work        = New Scientist
+
  |work        =New Scientist
    
作者: 《新科学家》
 
作者: 《新科学家》
   −
  |date        = 2007-11-22
+
  |date        =2007-11-22
   −
  |date        = 2007-11-22
+
  |date        =2007-11-22
    
日期2007-11-22
 
日期2007-11-22
   −
  |url        = https://www.newscientist.com/article/mg19626313-800-has-observing-the-universe-hastened-its-end/
+
  |url        =https://www.newscientist.com/article/mg19626313-800-has-observing-the-universe-hastened-its-end/
   −
  |url        = https://www.newscientist.com/article/mg19626313-800-has-observing-the-universe-hastened-its-end/
+
  |url        =https://www.newscientist.com/article/mg19626313-800-has-observing-the-universe-hastened-its-end/
    
Https://www.newscientist.com/article/mg19626313-800-has-observing-the-universe-hastened-its-end/  
 
Https://www.newscientist.com/article/mg19626313-800-has-observing-the-universe-hastened-its-end/  
   −
  |accessdate  = 2007-11-25
+
  |accessdate  =2007-11-25
   −
  |accessdate  = 2007-11-25
+
  |accessdate  =2007-11-25
    
2007-11-25
 
2007-11-25
   −
  |url-status    = live
+
  |url-status    =live
   −
  |url-status    = live
+
  |url-status    =live
    
状态直播
 
状态直播
   −
  |archiveurl  = https://web.archive.org/web/20160310002305/https://www.newscientist.com/article/mg19626313-800-has-observing-the-universe-hastened-its-end/
+
  |archiveurl  =https://web.archive.org/web/20160310002305/https://www.newscientist.com/article/mg19626313-800-has-observing-the-universe-hastened-its-end/
   −
  |archiveurl  = https://web.archive.org/web/20160310002305/https://www.newscientist.com/article/mg19626313-800-has-observing-the-universe-hastened-its-end/
+
  |archiveurl  =https://web.archive.org/web/20160310002305/https://www.newscientist.com/article/mg19626313-800-has-observing-the-universe-hastened-its-end/
    
| archiveurl  https://web.archive.org/web/20160310002305/https://www.newscientist.com/article/mg19626313-800-has-observing-the-universe-hastened-its-end/  
 
| archiveurl  https://web.archive.org/web/20160310002305/https://www.newscientist.com/article/mg19626313-800-has-observing-the-universe-hastened-its-end/  
   −
  |archivedate = 2016-03-10
+
  |archivedate =2016-03-10
   −
|archivedate = 2016-03-10
+
<nowiki> </nowiki><nowiki>|</nowiki>archivedate =2016-03-10
    
2016-03-10
 
2016-03-10
   −
}}</ref><ref>{{cite journal
+
}}</ref><ref name=":15">{{cite journal
   −
}}</ref><ref>{{cite journal
+
}}</ref><ref name=":16"><nowiki>{{cite journal
    
} / ref { cite journal
 
} / ref { cite journal
   −
   | last = Krauss
+
   | last =Krauss
   −
   | last = Krauss
+
   | last =Krauss
    
最后的克劳斯
 
最后的克劳斯
   −
   | first = Lawrence M.
+
   | first =Lawrence M.
   −
   | first = Lawrence M.
+
   | first =Lawrence M.
    
首先是劳伦斯 m。
 
首先是劳伦斯 m。
第1,052行: 第426行:  
作者: 詹姆斯 · 登特
 
作者: 詹姆斯 · 登特
   −
   | title = Late Time Behavior of False Vacuum Decay: Possible Implications for Cosmology and Metastable Inflating States
+
   | title =Late Time Behavior of False Vacuum Decay: Possible Implications for Cosmology and Metastable Inflating States
   −
   | title = Late Time Behavior of False Vacuum Decay: Possible Implications for Cosmology and Metastable Inflating States
+
   | title =Late Time Behavior of False Vacuum Decay: Possible Implications for Cosmology and Metastable Inflating States
    
虚假真空衰变的后期行为: 对宇宙学和亚稳态膨胀态的可能影响
 
虚假真空衰变的后期行为: 对宇宙学和亚稳态膨胀态的可能影响
   −
   | journal = Phys. Rev. Lett.
+
   | journal =Phys. Rev. Lett.
   −
   | journal = Phys. Rev. Lett.
+
   | journal =Phys. Rev. Lett.
    
体育杂志。牧师。莱特。
 
体育杂志。牧师。莱特。
   −
   | volume = 100
+
   | volume =100
   −
   | volume = 100
+
   | volume =100
    
第100卷
 
第100卷
   −
   | issue = 17
+
   | issue =17
   −
   | issue = 17
+
   | issue =17
    
第17期
 
第17期
第1,082行: 第456行:  
171301页
 
171301页
   −
   | location = US
+
   | location =US
   −
   | location = US
+
   | location =US
    
| 位置: US
 
| 位置: US
   −
   | date = April 30, 2008
+
   | date =April 30, 2008
   −
   | date = April 30, 2008
+
   | date =April 30, 2008
    
日期: 2008年4月30日
 
日期: 2008年4月30日
   −
   | arxiv = 0711.1821
+
   | arxiv =0711.1821
   −
   | arxiv = 0711.1821
+
   | arxiv =0711.1821
    
0711.1821
 
0711.1821
   −
   | doi = 10.1103/PhysRevLett.100.171301
+
   | doi =10.1103/PhysRevLett.100.171301
   −
   | doi = 10.1103/PhysRevLett.100.171301
+
   | doi =10.1103/PhysRevLett.100.171301
    
| doi 10.1103 / physrvlett. 100.171301
 
| doi 10.1103 / physrvlett. 100.171301
   −
   | pmid = 18518269
+
   | pmid =18518269
   −
   | pmid = 18518269
+
   | pmid =18518269
    
18518269
 
18518269
   −
  | id =|bibcode = 2008PhRvL.100q1301K }}</ref>
+
  | id |bibcode =2008PhRvL.100q1301K }}</nowiki></ref>
   −
另一方面,一些著名的物理学家甚至认为,通过一种伪薛定谔猫效应,天文学家在1998年对宇宙暗能量的观测可能会“缩短宇宙的预期寿命”,但这种观点非常具有争议。
+
另一方面,一些著名的物理学家甚至认为,通过一种伪薛定谔猫效应,天文学家在1998年对宇宙暗能量的观测可能会“缩短宇宙的预期寿命”,但这种观点非常具有争议<ref name=":14" /><ref name=":15" /><ref name=":16" />。
    
  | id =|bibcode = 2008PhRvL.100q1301K }}</ref>
 
  | id =|bibcode = 2008PhRvL.100q1301K }}</ref>
29

个编辑

导航菜单