# 演化网络 Evolving networks

（重定向自网络演化

## 网络理论背景

Watts–Strogatz graph 瓦茨-斯托加茨图

$\displaystyle{ P(k)\sim k^{-\gamma} }$

## 第一个演化网络模型——无标度网络

$\displaystyle{ p_i = \frac{k_i}{\displaystyle\sum_j k_j}, }$

## BA模型以外

BA模型是第一个从随着时间的推移而添加节点和连边的网络构造方式中推导出网络拓扑的模型。然而，该模型只做了产生无标度网络所必需的最简单的假设，即存在线性增长和线性偏好依附。这个最小模型没有刻画度分布形状的变化，度指数的变化，或不依赖大小的集聚系数 clustering coefficient

### 适应度

$\displaystyle{ \Pi(k_i) = \frac{\eta_i k_i}{\displaystyle\sum_j \eta_j k_j}, }$

$\displaystyle{ \Pi(k_i) \propto k_i(t-t_i)^{-\nu}, }$

## 应用

2009年世界预定商业航空交通路线图。这个网络随着新路线的计划或取消而不断演变

## 扩展阅读

• "Linked: The New Science of Networks", A.-L. Barabási Perseus Publishing, Cambridge.

## 参考资料

1. Watts, D.J.; Strogatz, S.H. (1998). "Collective dynamics of 'small-world' networks". Nature. 393 (6684): 409–10. Bibcode:1998Natur.393..440W. doi:10.1038/30918. PMID 9623998.
2. Travers Jeffrey; Milgram Stanley (1969). "An Experimental Study of the Small World Problem". Sociometry. 32 (4): 425–443. doi:10.2307/2786545. JSTOR 2786545.
3. R. Albert; A.-L. Barabási (2000). "Topology of Evolving Networks: Local Events and Universality" (PDF). Physical Review Letters. 85 (24): 5234–5237. arXiv:cond-mat/0005085. Bibcode:2000PhRvL..85.5234A. doi:10.1103/PhysRevLett.85.5234. hdl:2047/d20000695. PMID 11102229.
4. Albert R. and Barabási A.-L., "Statistical mechanics of complex networks", Reviews of Modern Physics 74, 47 (2002)
5. Kasthurirathna, Dharshana; Piraveenan, Mahendra. (2015). "Emergence of scale-free characteristics in socioecological systems with bounded rationality". Scientific Reports. In Press.
6. Pierre Borgnat; Eric Fleury; et al. "Evolving Networks" (PDF). Cite journal requires |journal= (help)
7. A. Chaintreau; P. Hui; J. Crowcroft; C. Diot; R. Gass; J. Scott (2006). "Impact of human mobility on the design of opportunistic forwarding algorithms" (PDF). Infocom.
8. G. Palla; A. Barabasi; T. Vicsek; Y. Chi, S. Zhu, X. Song, J. Tatemura, and B.L. Tseng (2007). "Quantifying social group evolution". Nature. 446 (7136): 664–667. arXiv:0704.0744. Bibcode:2007Natur.446..664P. doi:10.1038/nature05670. PMID 17410175.CS1 maint: multiple names: authors list (link)
9. Y. Chi, S. Zhuid=1281213&type=pdf; X. Song; J. Tatemura; B.L. Tseng (2007). Structural and temporal analysis of the blogosphere through community factorization. pp. 163–172. doi:10.1145/1281192.1281213. ISBN 9781595936097.
10. I. Farkas; I. Derenyi; H. Heong; et al. (2002). "Networks in life: scaling properties and eigenvalue spectra" (PDF). Physica. 314 (1–4): 25–34. arXiv:cond-mat/0303106. Bibcode:2002PhyA..314...25F. doi:10.1016/S0378-4371(02)01181-0. Archived from the original (PDF) on 2011-10-04. Retrieved 2011-04-21.